It can easily pass through the blood-brain barrier and is known to protect the nerve tissues present in the brain. There is evidence that the acid plays an instrumental role in preventing strokes in adults by decreasing the number of free radicals in the body.  It increases the production of acetylcholine, a neurotransmitter that most Alzheimer’s patients are a deficit in.
The goal of this article has been to synthesize what is known about the use of prescription stimulants for cognitive enhancement and what is known about the cognitive effects of these drugs. We have eschewed discussion of ethical issues in favor of simply trying to get the facts straight. Although ethical issues cannot be decided on the basis of facts alone, neither can they be decided without relevant facts. Personal and societal values will dictate whether success through sheer effort is as good as success with pharmacologic help, whether the freedom to alter one’s own brain chemistry is more important than the right to compete on a level playing field at school and work, and how much risk of dependence is too much risk. Yet these positions cannot be translated into ethical decisions in the real world without considerable empirical knowledge. Do the drugs actually improve cognition? Under what circumstances and for whom? Who will be using them and for what purposes? What are the mental and physical health risks for frequent cognitive-enhancement users? For occasional users?

Instead of buying expensive supplements, Lebowitz recommends eating heart-healthy foods, like those found in the MIND diet. Created by researchers at Rush University, MIND combines the Mediterranean and DASH eating plans, which have been shown to reduce the risk of heart problems. Fish, nuts, berries, green leafy vegetables and whole grains are MIND diet staples. Lebowitz says these foods likely improve your cognitive health by keeping your heart healthy.
I can test fish oil for mood, since the other claimed benefits like anti-schizophrenia are too hard to test. The medical student trial (Kiecolt-Glaser et al 2011) did not see changes until visit 3, after 3 weeks of supplementation. (Visit 1, 3 weeks, visit 2, supplementation started for 3 weeks, visit 3, supplementation continued 3 weeks, visit 4 etc.) There were no tests in between the test starting week 1 and starting week 3, so I can’t pin it down any further. This suggests randomizing in 2 or 3 week blocks. (For an explanation of blocking, see the footnote in the Zeo page.)
Some cognitive enhancers, such as donepezil and galantamine, are prescribed for elderly patients with impaired reasoning and memory deficits caused by various forms of dementia, including Alzheimer disease, Parkinson disease with dementia, dementia with Lewy bodies, and vascular dementia. Children and young adults with attention-deficit/hyperactivity disorder (ADHD) are often treated with the cognitive enhancers Ritalin (methylphenidate) or Adderall (mixed amphetamine salts). Persons diagnosed with narcolepsy find relief from sudden attacks of sleep through wake-promoting agents such as Provigil (modafinil). Generally speaking, cognitive enhancers improve working and episodic (event-specific) memory, attention, vigilance, and overall wakefulness but act through different brain systems and neurotransmitters to exert their enhancing effects.

Took pill 12:11 PM. I am not certain. While I do get some things accomplished (a fair amount of work on the Silk Road article and its submission to places), I also have some difficulty reading through a fiction book (Sum) and I seem kind of twitchy and constantly shifting windows. I am weakly inclined to think this is Adderall (say, 60%). It’s not my normal feeling. Next morning - it was Adderall.


The evidence? In small studies, healthy people taking modafinil showed improved planning and working memory, and better reaction time, spatial planning, and visual pattern recognition. A 2015 meta-analysis claimed that “when more complex assessments are used, modafinil appears to consistently engender enhancement of attention, executive functions, and learning” without affecting a user’s mood. In a study from earlier this year involving 39 male chess players, subjects taking modafinil were found to perform better in chess games played against a computer.
“Such an informative and inspiring read! Insight into how optimal nutrients improved Cavin’s own brain recovery make this knowledge-filled read compelling and relatable. The recommendations are easy to understand as well as scientifically-founded – it’s not another fad diet manual. The additional tools and resources provided throughout make it possible for anyone to integrate these enhancements into their nutritional repertoire. Looking forward to more from Cavin and Feed a Brain!!!!!!”
Taken together, these considerations suggest that the cognitive effects of stimulants for any individual in any task will vary based on dosage and will not easily be predicted on the basis of data from other individuals or other tasks. Optimizing the cognitive effects of a stimulant would therefore require, in effect, a search through a high-dimensional space whose dimensions are dose; individual characteristics such as genetic, personality, and ability levels; and task characteristics. The mixed results in the current literature may be due to the lack of systematic optimization.
Sleep itself is an underrated cognition enhancer. It is involved in enhancing long-term memories as well as creativity. For instance, it is well established that during sleep memories are consolidated-a process that "fixes" newly formed memories and determines how they are shaped. Indeed, not only does lack of sleep make most of us moody and low on energy, cutting back on those precious hours also greatly impairs cognitive performance. Exercise and eating well also enhance aspects of cognition. It turns out that both drugs and "natural" enhancers produce similar physiological changes in the brain, including increased blood flow and neuronal growth in structures such as the hippocampus. Thus, cognition enhancers should be welcomed but not at the expense of our health and well being.

SOURCES: Marvin Hausman, MD, CEO, Axonyx Inc. Axel Unterbeck, PhD, president, chief scientific officer, Memory Pharmaceuticals. Martha Farah, PhD, professor, department of psychiatry, University of Pennsylvania. Howard Gardner, PhD, Hobbs Professor of Education and Cognition, Harvard Graduate School of Education. Nature Reviews Neuroscience, May 2004. Neurology, July 2002. Alzheimer's Association.

We’ve talk about how caffeine affects the body in great detail, but the basic idea is that it can improve your motivation and focus by increasing catecholamine signaling. Its effects can be dampened over time, however, as you start to build a caffeine tolerance. Research on L-theanine, a common amino acid, suggests it promotes neuronal health and can decrease the incidence of cold and flu symptoms by strengthening the immune system. And one study, published in the journal Biological Psychology, found that L-theanine reduces psychological and physiological stress responses—which is why it’s often taken with caffeine. In fact, in a 2014 systematic review of 11 different studies, published in the journal Nutrition Review, researchers found that use of caffeine in combination with L-theanine promoted alertness, task switching, and attention. The reviewers note the effects are most pronounced during the first two hours post-dose, and they also point out that caffeine is the major player here, since larger caffeine doses were found to have more of an effect than larger doses of L-theanine.
Another classic approach to the assessment of working memory is the span task, in which a series of items is presented to the subject for repetition, transcription, or recognition. The longest series that can be reproduced accurately is called the forward span and is a measure of working memory capacity. The ability to reproduce the series in reverse order is tested in backward span tasks and is a more stringent test of working memory capacity and perhaps other working memory functions as well. The digit span task from the Wechsler (1981) IQ test was used in four studies of stimulant effects on working memory. One study showed that d-AMP increased digit span (de Wit et al., 2002), and three found no effects of d-AMP or MPH (Oken, Kishiyama, & Salinsky, 1995; Schmedtje, Oman, Letz, & Baker, 1988; Silber, Croft, Papafotiou, & Stough, 2006). A spatial span task, in which subjects must retain and reproduce the order in which boxes in a scattered spatial arrangement change color, was used by Elliott et al. (1997) to assess the effects of MPH on working memory. For subjects in the group receiving placebo first, MPH increased spatial span. However, for the subjects who received MPH first, there was a nonsignificant opposite trend. The group difference in drug effect is not easily explained. The authors noted that the subjects in the first group performed at an overall lower level, and so, this may be another manifestation of the trend for a larger enhancement effect for less able subjects.

To judge from recent reports in the popular media, healthy people have also begun to use MPH and AMPs for cognitive enhancement. Major daily newspapers such as The New York Times, The LA Times, and The Wall Street Journal; magazines including Time, The Economist, The New Yorker, and Vogue; and broadcast news organizations including the BBC, CNN, and NPR have reported a trend toward growing use of prescription stimulants by healthy people for the purpose of enhancing school or work performance.


As already mentioned, AMPs and MPH are classified by the U.S. Food and Drug Administration (FDA) as Schedule II substances, which means that buying or selling them is a felony offense. This raises the question of how the drugs are obtained by students for nonmedical use. Several studies addressed this question and yielded reasonably consistent answers.
Analgesics Anesthetics General Local Anorectics Anti-ADHD agents Antiaddictives Anticonvulsants Antidementia agents Antidepressants Antimigraine agents Antiparkinson agents Antipsychotics Anxiolytics Depressants Entactogens Entheogens Euphoriants Hallucinogens Psychedelics Dissociatives Deliriants Hypnotics/Sedatives Mood Stabilizers Neuroprotectives Nootropics Neurotoxins Orexigenics Serenics Stimulants Wakefulness-promoting agents
×