Federal law classifies most nootropics as dietary supplements, which means that the Food and Drug Administration does not regulate manufacturers’ statements about their benefits (as the giant “This product is not intended to diagnose, treat, cure, or prevent any disease” disclaimer on the label indicates). And the types of claims that the feds do allow supplement companies to make are often vague and/or supported by less-than-compelling scientific evidence. “If you find a study that says that an ingredient caused neurons to fire on rat brain cells in a petri dish,” says Pieter Cohen, an assistant professor at Harvard Medical School, “you can probably get away with saying that it ‘enhances memory’ or ‘promotes brain health.’”

Christopher Wanjek is the Bad Medicine columnist for Live Science and a health and science writer based near Washington, D.C.  He is the author of two health books, "Food at Work" (2005) and "Bad Medicine" (2003), and a comical science novel, "Hey Einstein" (2012). For Live Science, Christopher covers public health, nutrition and biology, and he occasionally opines with a great deal of healthy skepticism. His "Food at Work" book and project, commissioned by the U.N.'s International Labor Organization, concerns workers health, safety and productivity. Christopher has presented this book in more than 20 countries and has inspired the passage of laws to support worker meal programs in numerous countries. Christopher holds a Master of Health degree from Harvard School of Public Health and a degree in journalism from Temple University. He has two Twitter handles, @wanjek (for science) and @lostlenowriter (for jokes).
^ Sattler, Sebastian; Forlini, Cynthia; Racine, Éric; Sauer, Carsten (August 5, 2013). "Impact of Contextual Factors and Substance Characteristics on Perspectives toward Cognitive Enhancement". PLOS ONE. 8 (8): e71452. Bibcode:2013PLoSO...871452S. doi:10.1371/journal.pone.0071452. ISSN 1932-6203. LCCN 2006214532. OCLC 228234657. PMC 3733969. PMID 23940757.
A provisional conclusion about the effects of stimulants on learning is that they do help with the consolidation of declarative learning, with effect sizes varying widely from small to large depending on the task and individual study. Indeed, as a practical matter, stimulants may be more helpful than many of the laboratory tasks indicate, given the apparent dependence of enhancement on length of delay before testing. Although, as a matter of convenience, experimenters tend to test memory for learned material soon after the learning, this method has not generally demonstrated stimulant-enhanced learning. However, when longer periods intervene between learning and test, a more robust enhancement effect can be seen. Note that the persistence of the enhancement effect well past the time of drug action implies that state-dependent learning is not responsible. In general, long-term effects on learning are of greater practical value to people. Even students cramming for exams need to retain information for more than an hour or two. We therefore conclude that stimulant medication does enhance learning in ways that may be useful in the real world.
Given the size of the literature just reviewed, it is surprising that so many basic questions remain open. Although d-AMP and MPH appear to enhance retention of recently learned information and, in at least some individuals, also enhance working memory and cognitive control, there remains great uncertainty regarding the size and robustness of these effects and their dependence on dosage, individual differences, and specifics of the task.
Nondrug cognitive-enhancement methods include the high tech and the low. An example of the former is transcranial magnetic stimulation (TMS), whereby weak currents are induced in specific brain areas by magnetic fields generated outside the head. TMS is currently being explored as a therapeutic modality for neuropsychiatric conditions as diverse as depression and ADHD and is capable of enhancing the cognition of normal healthy people (e.g., Kirschen, Davis-Ratner, Jerde, Schraedley-Desmond, & Desmond, 2006). An older technique, transcranial direct current stimulation (tDCS), has become the subject of renewed research interest and has proven capable of enhancing the cognitive performance of normal healthy individuals in a variety of tasks. For example, Flöel, Rösser, Michka, Knecht, and Breitenstein (2008) reported enhancement of learning and Dockery, Hueckel-Weng, Birbaumer, and Plewnia (2009) reported enhancement of planning with tDCS.
Use of prescription stimulants by normal healthy individuals to enhance cognition is said to be on the rise. Who is using these medications for cognitive enhancement, and how prevalent is this practice? Do prescription stimulants in fact enhance cognition for normal healthy people? We review the epidemiological and cognitive neuroscience literatures in search of answers to these questions. Epidemiological issues addressed include the prevalence of nonmedical stimulant use, user demographics, methods by which users obtain prescription stimulants, and motivations for use. Cognitive neuroscience issues addressed include the effects of prescription stimulants on learning and executive function, as well as the task and individual variables associated with these effects. Little is known about the prevalence of prescription stimulant use for cognitive enhancement outside of student populations. Among college students, estimates of use vary widely but, taken together, suggest that the practice is commonplace. The cognitive effects of stimulants on normal healthy people cannot yet be characterized definitively, despite the volume of research that has been carried out on these issues. Published evidence suggests that declarative memory can be improved by stimulants, with some evidence consistent with enhanced consolidation of memories. Effects on the executive functions of working memory and cognitive control are less reliable but have been found for at least some individuals on some tasks. In closing, we enumerate the many outstanding questions that remain to be addressed by future research and also identify obstacles facing this research.
First off, overwhelming evidence suggests that smart drugs actually work. A meta-analysis by researchers at Harvard Medical School and Oxford showed that Modafinil has significant cognitive benefits for those who do not suffer from sleep deprivation. The drug improves their ability to plan and make decisions and has a positive effect on learning and creativity. Another study, by researchers at Imperial College London, showed that Modafinil helped sleep-deprived surgeons become better at planning, redirecting their attention, and being less impulsive when making decisions.
Most people would describe school as a place where they go to learn, so learning is an especially relevant cognitive process for students to enhance. Even outside of school, however, learning plays a role in most activities, and the ability to enhance the retention of information would be of value in many different occupational and recreational contexts.
It is not because of the few thousand francs which would have to be spent to put a roof [!] over the third-class carriages or to upholster the third-class seats that some company or other has open carriages with wooden benches. What the company is trying to do is to prevent the passengers who can pay the second class fare from traveling third class; it hits the poor, not because it wants to hurt them, but to frighten the rich. And it is again for the same reason that the companies, having proved almost cruel to the third-class passengers and mean to the second-class ones, become lavish in dealing with first-class passengers. Having refused the poor what is necessary, they give the rich what is superfluous.
The abuse of drugs is something that can lead to large negative outcomes. If you take Ritalin (Methylphenidate) or Adderall (mixed amphetamine salts) but don’t have ADHD, you may experience more focus. But what many people don’t know is that the drug is very similar to amphetamines. And the use of Ritalin is associated with serious adverse events of drug dependence, overdose and suicide attempts [80]. Taking a drug for another reason than originally intended is stupid, irresponsible and very dangerous.

A Romanian psychologist and chemist named Corneliu Giurgea started using the word nootropic in the 1970s to refer to substances that improve brain function, but humans have always gravitated toward foods and chemicals that make us feel sharper, quicker, happier, and more content. Our brains use about 20 percent of our energy when our bodies are at rest (compared with 8 percent for apes), according to National Geographic, so our thinking ability is directly affected by the calories we’re taking in as well as by the nutrients in the foods we eat. Here are the nootropics we don’t even realize we’re using, and an expert take on how they work.


Two variants of the Towers of London task were used by Elliott et al. (1997) to study the effects of MPH on planning. The object of this task is for subjects to move game pieces from one position to another while adhering to rules that constrain the ways in which they can move the pieces, thus requiring subjects to plan their moves several steps ahead. Neither version of the task revealed overall effects of the drug, but one version showed impairment for the group that received the drug first, and the other version showed enhancement for the group that received the placebo first.

After 7 days, I ordered a kg of choline bitartrate from Bulk Powders. Choline is standard among piracetam-users because it is pretty universally supported by anecdotes about piracetam headaches, has support in rat/mice experiments27, and also some human-related research. So I figured I couldn’t fairly test piracetam without some regular choline - the eggs might not be enough, might be the wrong kind, etc. It has a quite distinctly fishy smell, but the actual taste is more citrus-y, and it seems to neutralize the piracetam taste in tea (which makes things much easier for me).


Smart pills are defined as drugs or prescription medication used to treat certain mental disorders, from milder ones such as brain fog, to some more severe like ADHD. They are often referred to as ‘nootropics’ but even though the two terms are often used interchangeably, smart pills and nootropics represent two different types of cognitive enhancers.
My predictions were substantially better than random chance7, so my default belief - that Adderall does affect me and (mostly) for the better - is borne out. I usually sleep very well and 3 separate incidents of horrible sleep in a few weeks seems rather unlikely (though I didn’t keep track of dates carefully enough to link the Zeo data with the Adderall data). Between the price and the sleep disturbances, I don’t think Adderall is personally worthwhile.
“I have a bachelors degree in Nutrition Science. Cavin’s Balaster’s How to Feed a Brain is one the best written health nutrition books that I have ever read. It is evident that through his personal journey with a TBI and many years of research Cavin has gained a great depth of understanding on the biomechanics of nutrition has how it relates to the structure of the brain and nervous system, as well as how all of the body systems intercommunicate with one another. He then takes this complicated knowledge and breaks it down into a concise and comprehensive book. If you or your loved one is suffering from ANY neurological disorder or TBI please read this book.”
Imagine a pill you can take to speed up your thought processes, boost your memory, and make you more productive. If it sounds like the ultimate life hack, you’re not alone. There are pills that promise that out there, but whether they work is complicated. Here are the most popular cognitive enhancers available, and what science actually says about them.
Among the questions to be addressed in the present article are, How widespread is the use of prescription stimulants for cognitive enhancement? Who uses them, for what specific purposes? Given that nonmedical use of these substances is illegal, how are they obtained? Furthermore, do these substances actually enhance cognition? If so, what aspects of cognition do they enhance? Is everyone able to be enhanced, or are some groups of healthy individuals helped by these drugs and others not? The goal of this article is to address these questions by reviewing and synthesizing findings from the existing scientific literature. We begin with a brief overview of the psychopharmacology of the two most commonly used prescription stimulants.
ATTENTION CANADIAN CUSTOMERS: Due to delays caused by it's union’s ongoing rotating strikes, Canada Post has suspended its delivery standard guarantees for parcel services. This may cause a delay in the delivery of your shipment unless you select DHL Express or UPS Express as your shipping service. For more information or further assistance, please visit the Canada Post website. Thank you.
Ginsenoside Rg1, a molecule found in the plant genus panax (ginseng), is being increasingly researched as an effect nootropic. Its cognitive benefits including increasing learning ability and memory acquisition, and accelerating neural development. It targets mainly the NMDA receptors and nitric oxide synthase, which both play important roles in personal and emotional intelligence. The authors of the study cited above, say that their research findings thus far have boosted their confidence in a "bright future of cognitive drug development."
Panax ginseng – A review by the Cochrane Collaboration concluded that "there is a lack of convincing evidence to show a cognitive enhancing effect of Panax ginseng in healthy participants and no high quality evidence about its efficacy in patients with dementia."[36] According to the National Center for Complementary and Integrative Health, "[a]lthough Asian ginseng has been widely studied for a variety of uses, research results to date do not conclusively support health claims associated with the herb."[37]
×