Some work has been done on estimating the value of IQ, both as net benefits to the possessor (including all zero-sum or negative-sum aspects) and as net positive externalities to the rest of society. The estimates are substantial: in the thousands of dollars per IQ point. But since increasing IQ post-childhood is almost impossible barring disease or similar deficits, and even increasing childhood IQs is very challenging, much of these estimates are merely correlations or regressions, and the experimental childhood estimates must be weakened considerably for any adult - since so much time and so many opportunities have been lost. A wild guess: $1000 net present value per IQ point. The range for severely deficient children was 10-15 points, so any normal (somewhat deficient) adult gain must be much smaller and consistent with Fitzgerald 2012’s ceiling on possible effect sizes (small).
Sounds too good to be true? Welcome to the world of ‘Nootropics’ popularly known as ‘Smart Drugs’ that can help boost your brain’s power. Do you recall the scene from the movie Limitless, where Bradley Cooper’s character uses a smart drug that makes him brilliant? Yes! The effect of Nootropics on your brain is such that the results come as a no-brainer.
We reviewed recent studies concerning prescription stimulant use specifically among students in the United States and Canada, using the method illustrated in Figure 1. Although less informative about the general population, these studies included questions about students’ specific reasons for using the drugs, as well as frequency of use and means of obtaining them. These studies typically found rates of use greater than those reported by the nationwide NSDUH or the MTF surveys. This probably reflects a true difference in rates of usage among the different populations. In support of that conclusion, the NSDUH data for college age Americans showed that college students were considerably more likely than nonstudents of the same age to use prescription stimulants nonmedically (odds ratio: 2.76; Herman-Stahl, Krebs, Kroutil, & Heller, 2007).
Using the 21mg patches, I cut them into quarters. What I would do is I would cut out 1 quarter, and then seal the two edges with scotch tape, and put the Pac-Man back into its sleeve. Then the next time I would cut another quarter, seal the new edge, and so on. I thought that 5.25mg might be too much since I initially found 4mg gum to be too much, but it’s delivered over a long time and it wound up feeling much more like 1mg gum used regularly. I don’t know if the tape worked, but I did not notice any loss of potency. I didn’t like them as much as the gum because I would sometimes forget to take off a patch at the end of the day and it would interfere with sleep, and because the onset is much slower and I find I need stimulants more for getting started than for ongoing stimulation so it is better to have gum which can be taken precisely when needed and start acting quickly. (One case where the patches were definitely better than the gum was long car trips where slow onset is fine, since you’re most alert at the start.) When I finally ran out of patches in June 2016 (using them sparingly), I ordered gum instead.
Similarly, we could try applying Nick Bostrom’s reversal test and ask ourselves, how would we react to a virus which had no effect but to eliminate sleep from alternating nights and double sleep in the intervening nights? We would probably grouch about it for a while and then adapt to our new hedonistic lifestyle of partying or working hard. On the other hand, imagine the virus had the effect of eliminating normal sleep but instead, every 2 minutes, a person would fall asleep for a minute. This would be disastrous! Besides the most immediate problems like safely driving vehicles, how would anything get done? You would hold a meeting and at any point, a third of the participants would be asleep. If the virus made it instead 2 hours on, one hour off, that would be better but still problematic: there would be constant interruptions. And so on, until we reach our present state of 16 hours on, 8 hours off. Given that we rejected all the earlier buffer sizes, one wonders if 16:8 can be defended as uniquely suited to circumstances. Is that optimal? It may be, given the synchronization with the night-day cycle, but I wonder; rush hour alone stands as an argument against synchronized sleep - wouldn’t our infrastructure would be much cheaper if it only had to handle the average daily load rather than cope with the projected peak loads? Might not a longer cycle be better? The longer the day, the less we are interrupted by sleep; it’s a hoary cliche about programmers that they prefer to work in long sustained marathons during long nights rather than sprint occasionally during a distraction-filled day, to the point where some famously adopt a 28 hour day (which evenly divides a week into 6 days). Are there other occupations which would benefit from a 20 hour waking period? Or 24 hour waking period? We might not know because without chemical assistance, circadian rhythms would overpower anyone attempting such schedules. It certainly would be nice if one had long time chunks in which could read a challenging book in one sitting, without heroic arrangements.↩

The use of prescription stimulants is especially prevalent among students.[9] Surveys suggest that 0.7–4.5% of German students have used cognitive enhancers in their lifetimes.[10][11][12] Stimulants such as dimethylamylamine and methylphenidate are used on college campuses and by younger groups.[13] Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily used for enhancement of academic performance rather than as recreational drugs.[14][15][16] Several factors positively and negatively influence an individual's willingness to use a drug for the purpose of enhancing cognitive performance. Among them are personal characteristics, drug characteristics, and characteristics of the social context.[10][11][17][18]
×