Hericium erinaceus (Examine.com) was recommended strongly by several on the ImmInst.org forums for its long-term benefits to learning, apparently linked to Nerve growth factor. Highly speculative stuff, and it’s unclear whether the mushroom powder I bought was the right form to take (ImmInst.org discussions seem to universally assume one is taking an alcohol or hotwater extract). It tasted nice, though, and I mixed it into my sleeping pills (which contain melatonin & tryptophan). I’ll probably never know whether the $30 for 0.5lb was well-spent or not.
It can easily pass through the blood-brain barrier and is known to protect the nerve tissues present in the brain. There is evidence that the acid plays an instrumental role in preventing strokes in adults by decreasing the number of free radicals in the body.  It increases the production of acetylcholine, a neurotransmitter that most Alzheimer’s patients are a deficit in.
The question of whether stimulants are smart pills in a pragmatic sense cannot be answered solely by consideration of the statistical significance of the difference between stimulant and placebo. A drug with tiny effects, even if statistically significant, would not be a useful cognitive enhancer for most purposes. We therefore report Cohen’s d effect size measure for published studies that provide either means and standard deviations or relevant F or t statistics (Thalheimer & Cook, 2002). More generally, with most sample sizes in the range of a dozen to a few dozen, small effects would not reliably be found.

Most research on these nootropics suggest they have some benefits, sure, but as Barbara Sahakian and Sharon Morein-Zamir explain in the journal Nature, nobody knows their long-term effects. And we don’t know how extended use might change your brain chemistry in the long run. Researchers are getting closer to what makes these substances do what they do, but very little is certain right now. If you’re looking to live out your own Limitless fantasy, do your research first, and proceed with caution.
Many of the positive effects of cognitive enhancers have been seen in experiments using rats. For example, scientists can train rats on a specific test, such as maze running, and then see if the "smart drug" can improve the rats' performance. It is difficult to see how many of these data can be applied to human learning and memory. For example, what if the "smart drug" made the rat hungry? Wouldn't a hungry rat run faster in the maze to receive a food reward than a non-hungry rat? Maybe the rat did not get any "smarter" and did not have any improved memory. Perhaps the rat ran faster simply because it was hungrier. Therefore, it was the rat's motivation to run the maze, not its increased cognitive ability that affected the performance. Thus, it is important to be very careful when interpreting changes observed in these types of animal learning and memory experiments.
For 2 weeks, upon awakening I took close-up photographs of my right eye. Then I ordered two jars of Life-Extension Sea-Iodine (60x1mg) (1mg being an apparently safe dose), and when it arrived on 10 September 2012, I stopped the photography and began taking 1 iodine pill every other day. I noticed no ill effects (or benefits) after a few weeks and upped the dose to 1 pill daily. After the first jar of 60 pills was used up, I switched to the second jar, and began photography as before for 2 weeks. The photographs were uploaded, cropped by hand in Gimp, and shrunk to more reasonable dimensions; both sets are available in a Zip file.
The data from 2-back and 3-back tasks are more complex. Three studies examined performance in these more challenging tasks and found no effect of d-AMP on average performance (Mattay et al., 2000, 2003; Mintzer & Griffiths, 2007). However, in at least two of the studies, the overall null result reflected a mixture of reliably enhancing and impairing effects. Mattay et al. (2000) examined the performance of subjects with better and worse working memory capacity separately and found that subjects whose performance on placebo was low performed better on d-AMP, whereas subjects whose performance on placebo was high were unaffected by d-AMP on the 2-back and impaired on the 3-back tasks. Mattay et al. (2003) replicated this general pattern of data with subjects divided according to genotype. The specific gene of interest codes for the production of Catechol-O-methyltransferase (COMT), an enzyme that breaks down dopamine and norepinephrine. A common polymorphism determines the activity of the enzyme, with a substitution of methionine for valine at Codon 158 resulting in a less active form of COMT. The met allele is thus associated with less breakdown of dopamine and hence higher levels of synaptic dopamine than the val allele. Mattay et al. (2003) found that subjects who were homozygous for the val allele were able to perform the n-back faster with d-AMP; those homozygous for met were not helped by the drug and became significantly less accurate in the 3-back condition with d-AMP. In the case of the third study finding no overall effect, analyses of individual differences were not reported (Mintzer & Griffiths, 2007).
The goal of this article has been to synthesize what is known about the use of prescription stimulants for cognitive enhancement and what is known about the cognitive effects of these drugs. We have eschewed discussion of ethical issues in favor of simply trying to get the facts straight. Although ethical issues cannot be decided on the basis of facts alone, neither can they be decided without relevant facts. Personal and societal values will dictate whether success through sheer effort is as good as success with pharmacologic help, whether the freedom to alter one’s own brain chemistry is more important than the right to compete on a level playing field at school and work, and how much risk of dependence is too much risk. Yet these positions cannot be translated into ethical decisions in the real world without considerable empirical knowledge. Do the drugs actually improve cognition? Under what circumstances and for whom? Who will be using them and for what purposes? What are the mental and physical health risks for frequent cognitive-enhancement users? For occasional users?
Hall, Irwin, Bowman, Frankenberger, & Jewett (2005) Large public university undergraduates (N = 379) 13.7% (lifetime) 27%: use during finals week; 12%: use when party; 15.4%: use before tests; 14%: believe stimulants have a positive effect on academic achievement in the long run M = 2.06 (SD = 1.19) purchased stimulants from other students; M = 2.81 (SD = 1.40) have been given stimulants by other studentsb
With all these studies pointing to the nootropic benefits of some essential oils, it can logically be concluded then that some essential oils can be considered “smart drugs.” However, since essential oils have so much variety and only a small fraction of this wide range has been studied, it cannot be definitively concluded that absolutely all essential oils have brain-boosting benefits. The connection between the two is strong, however.
Capsule Connection sells 1000 00 pills (the largest pills) for $9. I already have a pill machine, so that doesn’t count (a sunk cost). If we sum the grams per day column from the first table, we get 9.75 grams a day. Each 00 pill can take around 0.75 grams, so we need 13 pills. (Creatine is very bulky, alas.) 13 pills per day for 1000 days is 13,000 pills, and 1,000 pills is $9 so we need 13 units and 13 times 9 is $117.

On 8 April 2011, I purchased from Smart Powders (20g for $8); as before, some light searching seemed to turn up SP as the best seller given shipping overhead; it was on sale and I planned to cap it so I got 80g. This may seem like a lot, but I was highly confident that theanine and I would get along since I already drink so much tea and was a tad annoyed at the edge I got with straight caffeine. So far I’m pretty happy with it. My goal was to eliminate the physical & mental twitchiness of caffeine, which subjectively it seems to do.
Exercise is also important, says Lebowitz. Studies have shown it sharpens focus, elevates your mood and improves concentration. Likewise, maintaining a healthy social life and getting enough sleep are vital, too. Studies have consistently shown that regularly skipping out on the recommended eight hours can drastically impair critical thinking skills and attention.
The evidence? Ritalin is FDA-approved to treat ADHD. It has also been shown to help patients with traumatic brain injury concentrate for longer periods, but does not improve memory in those patients, according to a 2016 meta-analysis of several trials. A study published in 2012 found that low doses of methylphenidate improved cognitive performance, including working memory, in healthy adult volunteers, but high doses impaired cognitive performance and a person’s ability to focus. (Since the brains of teens have been found to be more sensitive to the drug’s effect, it’s possible that methylphenidate in lower doses could have adverse effects on working memory and cognitive functions.)

An entirely different set of questions concerns cognitive enhancement in younger students, including elementary school and even preschool children. Some children can function adequately in school without stimulants but perform better with them; medicating such children could be considered a form of cognitive enhancement. How often does this occur? What are the roles and motives of parents, teachers, and pediatricians in these cases? These questions have been discussed elsewhere and deserve continued attention (Diller, 1996; Singh & Keller, 2010).

As mentioned earlier, cognitive control is needed not only for inhibiting actions, but also for shifting from one kind of action or mental set to another. The WCST taxes cognitive control by requiring the subject to shift from sorting cards by one dimension (e.g., shape) to another (e.g., color); failures of cognitive control in this task are manifest as perseverative errors in which subjects continue sorting by the previously successful dimension. Three studies included the WCST in their investigations of the effects of d-AMP on cognition (Fleming et al., 1995; Mattay et al., 1996, 2003), and none revealed overall effects of facilitation. However, Mattay et al. (2003) subdivided their subjects according to COMT genotype and found differences in both placebo performance and effects of the drug. Subjects who were homozygous for the val allele (associated with lower prefrontal dopamine activity) made more perseverative errors on placebo than other subjects and improved significantly with d-AMP. Subjects who were homozygous for the met allele performed best on placebo and made more errors on d-AMP.
Results: Women with high caffeine intakes had significantly higher rates of bone loss at the spine than did those with low intakes (−1.90 ± 0.97% compared with 1.19 ± 1.08%; P = 0.038). When the data were analyzed according to VDR genotype and caffeine intake, women with the tt genotype had significantly (P = 0.054) higher rates of bone loss at the spine (−8.14 ± 2.62%) than did women with the TT genotype (−0.34 ± 1.42%) when their caffeine intake was >300 mg/d…In 1994, Morrison et al (22) first reported an association between vitamin D receptor gene (VDR) polymorphism and BMD of the spine and hip in adults. After this initial report, the relation between VDR polymorphism and BMD, bone turnover, and bone loss has been extensively evaluated. The results of some studies support an association between VDR polymorphism and BMD (23-,25), whereas other studies showed no evidence for this association (26,27)…At baseline, no significant differences existed in serum parathyroid hormone, serum 25-hydroxyvitamin D, serum osteocalcin, and urinary N-telopeptide between the low- and high-caffeine groups (Table 1⇑). In the longitudinal study, the percentage of change in serum parathyroid hormone concentrations was significantly lower in the high-caffeine group than in the low-caffeine group (Table 2⇑). However, no significant differences existed in the percentage of change in serum 25-hydroxyvitamin D
What if you could simply take a pill that would instantly make you more intelligent? One that would enhance your cognitive capabilities including attention, memory, focus, motivation and other higher executive functions? If you have ever seen the movie Limitless, you have an idea of what this would look like—albeit the exaggerated Hollywood version. The movie may be fictional but the reality may not be too far behind.
Brain focus pills mostly contain chemical components like L-theanine which is naturally found in green and black tea. It’s associated with enhancing alertness, cognition, relaxation, arousal, and reducing anxiety to a large extent.  Theanine is an amino and glutamic acid that has been proven to be a safe psychoactive substance. Some studies suggest that this compound influences, the expression in the genes present in the brain which is responsible for aggression, fear, and memory. This, in turn, helps in balancing the behavioral responses to stress and also helps in improving specific conditions, like Post Traumatic Stress Disorder (PTSD).
“As a brain injury survivor that still deals with extreme light sensitivity, eye issues and other brain related struggles I have found a great diet is a key to brain health! Cavin’s book is a much needed guide to eating for brain health. While you can fill shelves with books that teach you good nutrition, Cavin’s book teaches you how to help your brain with what you eat. This is a much needed addition to the nutrition section! If you are looking to get the optimum performance out of your brain, get this book now! You won’t regret it.”
Many of these supplements include exotic-sounding ingredients. Ginseng root and an herb called bacopa are two that have shown some promising memory and attention benefits, says Dr. Guillaume Fond, a psychiatrist with France’s Aix-Marseille University Medical School who has studied smart drugs and cognitive enhancement. “However, data are still lacking to definitely confirm their efficacy,” he adds.
Amphetamines have a long track record as smart drugs, from the workaholic mathematician Paul Erdös, who relied on them to get through 19-hour maths binges, to the writer Graham Greene, who used them to write two books at once. More recently, there are plenty of anecdotal accounts in magazines about their widespread use in certain industries, such as journalism, the arts and finance.
Similarly, we could try applying Nick Bostrom’s reversal test and ask ourselves, how would we react to a virus which had no effect but to eliminate sleep from alternating nights and double sleep in the intervening nights? We would probably grouch about it for a while and then adapt to our new hedonistic lifestyle of partying or working hard. On the other hand, imagine the virus had the effect of eliminating normal sleep but instead, every 2 minutes, a person would fall asleep for a minute. This would be disastrous! Besides the most immediate problems like safely driving vehicles, how would anything get done? You would hold a meeting and at any point, a third of the participants would be asleep. If the virus made it instead 2 hours on, one hour off, that would be better but still problematic: there would be constant interruptions. And so on, until we reach our present state of 16 hours on, 8 hours off. Given that we rejected all the earlier buffer sizes, one wonders if 16:8 can be defended as uniquely suited to circumstances. Is that optimal? It may be, given the synchronization with the night-day cycle, but I wonder; rush hour alone stands as an argument against synchronized sleep - wouldn’t our infrastructure would be much cheaper if it only had to handle the average daily load rather than cope with the projected peak loads? Might not a longer cycle be better? The longer the day, the less we are interrupted by sleep; it’s a hoary cliche about programmers that they prefer to work in long sustained marathons during long nights rather than sprint occasionally during a distraction-filled day, to the point where some famously adopt a 28 hour day (which evenly divides a week into 6 days). Are there other occupations which would benefit from a 20 hour waking period? Or 24 hour waking period? We might not know because without chemical assistance, circadian rhythms would overpower anyone attempting such schedules. It certainly would be nice if one had long time chunks in which could read a challenging book in one sitting, without heroic arrangements.↩
Googling, you sometimes see correlational studies like Intake of Flavonoid-Rich Wine, Tea, and Chocolate by Elderly Men and Women Is Associated with Better Cognitive Test Performance; in this one, the correlated performance increase from eating chocolate was generally fairly modest (say, <10%), and the maximum effects were at 10g/day of what was probably milk chocolate, which generally has 10-40% chocolate liquor in it, suggesting any experiment use 1-4g. More interesting is the blind RCT experiment Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort11, which found improvements at ~1g; the most dramatic improvement of the 4 tasks (on the Threes correct) saw a difference of 2 to 6 at the end of the hour of testing, while several of the other tests converged by the end or saw the controls winning (Sevens correct). Crews et al 2008 found no cognitive benefit, and an fMRI experiment found the change in brain oxygen levels it wanted but no improvement to reaction times.
A 2015 review of various nutrients and dietary supplements found no convincing evidence of improvements in cognitive performance. While there are “plausible mechanisms” linking these and other food-sourced nutrients to better brain function, “supplements cannot replicate the complexity of natural food and provide all its potential benefits,” says Dr. David Hogan, author of that review and a professor of medicine at the University of Calgary in Canada.
^ Sattler, Sebastian; Mehlkop, Guido; Graeff, Peter; Sauer, Carsten (February 1, 2014). "Evaluating the drivers of and obstacles to the willingness to use cognitive enhancement drugs: the influence of drug characteristics, social environment, and personal characteristics". Substance Abuse Treatment, Prevention, and Policy. 9 (1): 8. doi:10.1186/1747-597X-9-8. ISSN 1747-597X. PMC 3928621. PMID 24484640.