What if you could simply take a pill that would instantly make you more intelligent? One that would enhance your cognitive capabilities including attention, memory, focus, motivation and other higher executive functions? If you have ever seen the movie Limitless, you have an idea of what this would look like—albeit the exaggerated Hollywood version. The movie may be fictional but the reality may not be too far behind.
Sure, those with a mental illness may very well need a little more monitoring to make sure they take their medications, but will those suffering from a condition with hallmark symptoms of paranoia and anxiety be helped by consuming a technology that quite literally puts a tracking device inside their body? For patients hearing voices telling them that they're being watched, a monitoring device may be a hard pill to swallow.
Of course, there are drugs out there with more transformative powers. “I think it’s very clear that some do work,” says Andrew Huberman, a neuroscientist based at Stanford University. In fact, there’s one category of smart drugs which has received more attention from scientists and biohackers – those looking to alter their own biology and abilities – than any other. These are the stimulants.

The greatly increased variance, but only somewhat increased mean, is consistent with nicotine operating on me with an inverted U-curve for dosage/performance (or the Yerkes-Dodson law): on good days, 1mg nicotine is too much and degrades performance (perhaps I am overstimulated and find it hard to focus on something as boring as n-back) while on bad days, nicotine is just right and improves n-back performance.


Took full pill at 10:21 PM when I started feeling a bit tired. Around 11:30, I noticed my head feeling fuzzy but my reading seemed to still be up to snuff. I would eventually finish the science book around 9 AM the next day, taking some very long breaks to walk the dog, write some poems, write a program, do Mnemosyne review (memory performance: subjectively below average, but not as bad as I would have expected from staying up all night), and some other things. Around 4 AM, I reflected that I felt much as I had during my nightwatch job at the same hour of the day - except I had switched sleep schedules for the job. The tiredness continued to build and my willpower weakened so the morning wasn’t as productive as it could have been - but my actual performance when I could be bothered was still pretty normal. That struck me as kind of interesting that I can feel very tired and not act tired, in line with the anecdotes.
Exercise is also important, says Lebowitz. Studies have shown it sharpens focus, elevates your mood and improves concentration. Likewise, maintaining a healthy social life and getting enough sleep are vital, too. Studies have consistently shown that regularly skipping out on the recommended eight hours can drastically impair critical thinking skills and attention.
Sulbutiamine, mentioned earlier as a cholinergic smart drug, can also be classed a dopaminergic, although its mechanism is counterintuitive: by reducing the release of dopamine in the brain’s prefrontal cortex, the density of dopamine receptors actually increase after continued Sulbutiamine exposure, through a compensatory mechanism. (This provides an interesting example of how dividing smart drugs into sensible “classes” is a matter of taste as well as science, especially since many of them create their discernable neural effects through still undefined mechanisms.)
Fitzgerald 2012 and the general absence of successful experiments suggests not, as does the general historic failure of scores of IQ-related interventions in healthy young adults. Of the 10 studies listed in the original section dealing with iodine in children or adults, only 2 show any benefit; in lieu of a meta-analysis, a rule of thumb would be 20%, but both those studies used a package of dozens of nutrients - and not just iodine - so if the responsible substance were randomly picked, that suggests we ought to give it a chance of 20% \times \frac{1}{\text{dozens}} of being iodine! I may be unduly optimistic if I give this as much as 10%.

Unfortunately, cognitive enhancement falls between the stools of research funding, which makes it unlikely that such research programs will be carried out. Disease-oriented funders will, by definition, not support research on normal healthy individuals. The topic intersects with drug abuse research only in the assessment of risk, leaving out the study of potential benefits, as well as the comparative benefits of other enhancement methods. As a fundamentally applied research question, it will not qualify for support by funders of basic science. The pharmaceutical industry would be expected to support such research only if cognitive enhancement were to be considered a legitimate indication by the FDA, which we hope would happen only after considerably more research has illuminated its risks, benefits, and societal impact. Even then, industry would have little incentive to delve into all of the issues raised here, including the comparison of drug effects to nonpharmaceutical means of enhancing cognition.


We can read off the results from the table or graph: the nicotine days average 1.1% higher, for an effect size of 0.24; however, the 95% credible interval (equivalent of confidence interval) goes all the way from 0.93 to -0.44, so we cannot exclude 0 effect and certainly not claim confidence the effect size must be >0.1. Specifically, the analysis gives a 66% chance that the effect size is >0.1. (One might wonder if any increase is due purely to a training effect - getting better at DNB. Probably not25.)
The therapeutic effect of AMP and MPH in ADHD is consistent with the finding of abnormalities in the catecholamine system in individuals with ADHD (e.g., Volkow et al., 2007). Both AMP and MPH exert their effects on cognition primarily by increasing levels of catecholamines in prefrontal cortex and the cortical and subcortical regions projecting to it, and this mechanism is responsible for improving cognition and behavior in ADHD (Pliszka, 2005; Wilens, 2006).
A 2015 review of various nutrients and dietary supplements found no convincing evidence of improvements in cognitive performance. While there are “plausible mechanisms” linking these and other food-sourced nutrients to better brain function, “supplements cannot replicate the complexity of natural food and provide all its potential benefits,” says Dr. David Hogan, author of that review and a professor of medicine at the University of Calgary in Canada.
Finally, it’s not clear that caffeine results in performance gains after long-term use; homeostasis/tolerance is a concern for all stimulants, but especially for caffeine. It is plausible that all caffeine consumption does for the long-term chronic user is restore performance to baseline. (Imagine someone waking up and drinking coffee, and their performance improves - well, so would the performance of a non-addict who is also slowly waking up!) See for example, James & Rogers 2005, Sigmon et al 2009, and Rogers et al 2010. A cross-section of thousands of participants in the Cambridge brain-training study found caffeine intake showed negligible effect sizes for mean and component scores (participants were not told to use caffeine, but the training was recreational & difficult, so one expects some difference).
Didn't seem very important to me. Trump's ability to discern importance in military projects, sure, why not. Shanahan may be the first honest cabinet head; it could happen. With the record this administration has I'd need some long odds to bet that way. Does anyone doubt he got the loyalty spiel and then the wink and nod that anything he could get away with was fine. monies
Dopaminergics are smart drug substances that affect levels of dopamine within the brain. Dopamine is a major neurotransmitter, responsible for the good feelings and biochemical positive feedback from behaviors for which our biology naturally rewards us: tasty food, sex, positive social relationships, etc. Use of dopaminergic smart drugs promotes attention and alertness by either increasing the efficacy of dopamine within the brain, or inhibiting the enzymes that break dopamine down. Examples of popular dopaminergic smart drug drugs include Yohimbe, selegiline and L-Tyrosine.
Both nootropics startups provide me with samples to try. In the case of Nootrobox, it is capsules called Sprint designed for a short boost of cognitive enhancement. They contain caffeine – the equivalent of about a cup of coffee, and L-theanine – about 10 times what is in a cup of green tea, in a ratio that is supposed to have a synergistic effect (all the ingredients Nootrobox uses are either regulated as supplements or have a “generally regarded as safe” designation by US authorities)
Not all drug users are searching for a chemical escape hatch. A newer and increasingly normalized drug culture is all about heightening one’s current relationship to reality—whether at work or school—by boosting the brain’s ability to think under stress, stay alert and productive for long hours, and keep track of large amounts of information. In the name of becoming sharper traders, medical interns, or coders, people are taking pills typically prescribed for conditions including ADHD, narcolepsy, and Alzheimer’s. Others down “stacks” of special “nootropic” supplements.
This looks interesting: the Noopept effect is positive for all the dose levels, but it looks like a U-curve - low at 10mg, high at 15mg, lower at 20mg, and even lower at 30mg 48mg and 60mg aren’t estimated because they are hit by the missingness problem: the magnesium citrate variable is unavailable for the days the higher doses were taken on, and so their days are omitted and those levels of the factor are not estimated. One way to fix this is to drop magnesium from the model entirely, at the cost of fitting the data much more poorly and losing a lot of R2:
Even if you eat foods that contain these nutrients, Hogan says their beneficial effects are in many ways cumulative—meaning the brain perks don’t emerge unless you’ve been eating them for long periods of time. Swallowing more of these brain-enhancing compounds at or after middle-age “may be beyond the critical period” when they’re able to confer cognitive enhancements, he says.
Another empirical question concerns the effects of stimulants on motivation, which can affect academic and occupational performance independent of cognitive ability. Volkow and colleagues (2004) showed that MPH increased participants’ self-rated interest in a relatively dull mathematical task. This is consistent with student reports that prescription stimulants make schoolwork seem more interesting (e.g., DeSantis et al., 2008). To what extent are the motivational effects of prescription stimulants distinct from their cognitive effects, and to what extent might they be more robust to differences in individual traits, dosage, and task? Are the motivational effects of stimulants responsible for their usefulness when taken by normal healthy individuals for cognitive enhancement?
We reviewed recent studies concerning prescription stimulant use specifically among students in the United States and Canada, using the method illustrated in Figure 1. Although less informative about the general population, these studies included questions about students’ specific reasons for using the drugs, as well as frequency of use and means of obtaining them. These studies typically found rates of use greater than those reported by the nationwide NSDUH or the MTF surveys. This probably reflects a true difference in rates of usage among the different populations. In support of that conclusion, the NSDUH data for college age Americans showed that college students were considerably more likely than nonstudents of the same age to use prescription stimulants nonmedically (odds ratio: 2.76; Herman-Stahl, Krebs, Kroutil, & Heller, 2007).
After my rudimentary stacking efforts flamed out in unspectacular fashion, I tried a few ready-made stacks—brand-name nootropic cocktails that offer to eliminate the guesswork for newbies. They were just as useful. And a lot more expensive. Goop’s Braindust turned water into tea-flavored chalk. But it did make my face feel hot for 45 minutes. Then there were the two pills of Brain Force Plus, a supplement hawked relentlessly by Alex Jones of InfoWars infamy. The only result of those was the lingering guilt of knowing that I had willingly put $19.95 in the jorts pocket of a dipshit conspiracy theorist.
A synthetic derivative of Piracetam, aniracetam is believed to be the second most widely used nootropic in the Racetam family, popular for its stimulatory effects because it enters the bloodstream quickly. Initially developed for memory and learning, many anecdotal reports also claim that it increases creativity. However, clinical studies show no effect on the cognitive functioning of healthy adult mice.
Use of prescription stimulants by normal healthy individuals to enhance cognition is said to be on the rise. Who is using these medications for cognitive enhancement, and how prevalent is this practice? Do prescription stimulants in fact enhance cognition for normal healthy people? We review the epidemiological and cognitive neuroscience literatures in search of answers to these questions. Epidemiological issues addressed include the prevalence of nonmedical stimulant use, user demographics, methods by which users obtain prescription stimulants, and motivations for use. Cognitive neuroscience issues addressed include the effects of prescription stimulants on learning and executive function, as well as the task and individual variables associated with these effects. Little is known about the prevalence of prescription stimulant use for cognitive enhancement outside of student populations. Among college students, estimates of use vary widely but, taken together, suggest that the practice is commonplace. The cognitive effects of stimulants on normal healthy people cannot yet be characterized definitively, despite the volume of research that has been carried out on these issues. Published evidence suggests that declarative memory can be improved by stimulants, with some evidence consistent with enhanced consolidation of memories. Effects on the executive functions of working memory and cognitive control are less reliable but have been found for at least some individuals on some tasks. In closing, we enumerate the many outstanding questions that remain to be addressed by future research and also identify obstacles facing this research.
The smart pill industry has popularized many herbal nootropics. Most of them first appeared in Ayurveda and traditional Chinese medicine. Ayurveda is a branch of natural medicine originating from India. It focuses on using herbs as remedies for improving quality of life and healing ailments. Evidence suggests our ancestors were on to something with this natural approach.

I am not alone in thinking of the potential benefits of smart drugs in the military. In their popular novel Ghost Fleet: A Novel of the Next World War, P.W. Singer and August Cole tell the story of a future war using drug-like nootropic implants and pills, such as Modafinil. DARPA is also experimenting with neurological technology and enhancements such as the smart drugs discussed here. As demonstrated in the following brain initiatives: Targeted Neuroplasticity Training (TNT), Augmented Cognition, and High-quality Interface Systems such as their Next-Generational Nonsurgical Neurotechnology (N3).
But when aficionados talk about nootropics, they usually refer to substances that have supposedly few side effects and low toxicity. Most often they mean piracetam, which Giurgea first synthesized in 1964 and which is approved for therapeutic use in dozens of countries for use in adults and the elderly. Not so in the United States, however, where officially it can be sold only for research purposes.

Table 5 lists the results of 16 tasks from 13 articles on the effects of d-AMP or MPH on cognitive control. One of the simplest tasks used to study cognitive control is the go/no-go task. Subjects are instructed to press a button as quickly as possible for one stimulus or class of stimuli (go) and to refrain from pressing for another stimulus or class of stimuli (no go). De Wit et al. (2002) used a version of this task to measure the effects of d-AMP on subjects’ ability to inhibit a response and found enhancement in the form of decreased false alarms (responses to no-go stimuli) and increased speed of correct go responses. They also found that subjects who made the most errors on placebo experienced the greatest enhancement from the drug.
Table 3 lists the results of 24 tasks from 22 articles on the effects of d-AMP or MPH on learning, assessed by a variety of declarative and nondeclarative memory tasks. Results for the 24 tasks are evenly split between enhanced learning and null results, but they yield a clearer pattern when the nature of the learning task and the retention interval are taken into account. In general, with single exposures of verbal material, no benefits are seen immediately following learning, but later recall and recognition are enhanced. Of the six articles reporting on memory performance (Camp-Bruno & Herting, 1994; Fleming, Bigelow, Weinberger, & Goldberg, 1995; Rapoport, Busbaum, & Weingartner, 1980; Soetens, D’Hooge, & Hueting, 1993; Unrug, Coenen, & van Luijtelaar, 1997; Zeeuws & Soetens 2007), encompassing eight separate experiments, only one of the experiments yielded significant memory enhancement at short delays (Rapoport et al., 1980). In contrast, retention was reliably enhanced by d-AMP when subjects were tested after longer delays, with recall improved after 1 hr through 1 week (Soetens, Casaer, D’Hooge, & Hueting, 1995; Soetens et al., 1993; Zeeuws & Soetens, 2007). Recognition improved after 1 week in one study (Soetens et al., 1995), while another found recognition improved after 2 hr (Mintzer & Griffiths, 2007). The one long-term memory study to examine the effects of MPH found a borderline-significant reduction in errors when subjects answered questions about a story (accompanied by slides) presented 1 week before (Brignell, Rosenthal, & Curran, 2007).

While these two compounds may not be as exciting as a super pill that instantly unlocks the full potential of your brain, they currently have the most science to back them up. And, as Patel explains, they’re both relatively safe for healthy individuals of most ages. Patel explains that a combination of caffeine and L-theanine is the most basic supplement stack (or combined dose) because the L-theanine can help blunt the anxiety and “shakiness” that can come with ingesting too much caffeine.
Chocolate or cocoa powder (Examine.com), contains the stimulants caffeine and the caffeine metabolite theobromine, so it’s not necessarily surprising if cocoa powder was a weak stimulant. It’s also a witch’s brew of chemicals such as polyphenols and flavonoids some of which have been fingered as helpful10, which all adds up to an unclear impact on health (once you control for eating a lot of sugar).
The question of how much nonmedical use of stimulants occurs on college campuses is only partly answered by the proportion of students using the drugs in this way. The other part of the answer is how frequently they are used by those students. Three studies addressed this issue. Low and Gendaszek (2002) found a high past-year rate of 35.3%, but only 10% and 8% of this population used monthly and weekly, respectively. White et al. (2006) found a larger percentage used frequently: 15.5% using two to three times per week and 33.9% using two to three times per month. Teter et al. (2006) found that most nonmedical users take prescription stimulants sporadically, with well over half using five or fewer times and nearly 40% using only once or twice in their lives. DeSantis et al. (2008) offered qualitative evidence on the issue, reporting that students often turned to stimulants at exam time only, particularly when under pressure to study for multiple exams at the same time. Thus, there appears to be wide variation in the regularity of stimulant use, with the most common pattern appearing to be infrequent use.

When Giurgea coined the word nootropic (combining the Greek words for mind and bending) in the 1970s, he was focused on a drug he had synthesized called piracetam. Although it is approved in many countries, it isn’t categorized as a prescription drug in the United States. That means it can be purchased online, along with a number of newer formulations in the same drug family (including aniracetam, phenylpiracetam, and oxiracetam). Some studies have shown beneficial effects, including one in the 1990s that indicated possible improvement in the hippocampal membranes in Alzheimer’s patients. But long-term studies haven’t yet borne out the hype.


Another common working memory task is the n-back task, which requires the subject to view a series of items (usually letters) and decide whether the current item is identical to the one presented n items back. This task taxes working memory because the previous items must be held in working memory to be compared with the current item. The easiest version of this is a 1-back task, which is also called a double continuous performance task (CPT) because the subject is continuously monitoring for a repeat or double. Three studies examined the effects of MPH on working memory ability as measured by the 1-back task, and all found enhancement of performance in the form of reduced errors of omission (Cooper et al., 2005; Klorman et al., 1984; Strauss et al., 1984). Fleming et al. (1995) tested the effects of d-AMP on a 5-min CPT and found a decrease in reaction time, but did not specify which version of the CPT was used.
The evidence? In small studies, healthy people taking modafinil showed improved planning and working memory, and better reaction time, spatial planning, and visual pattern recognition. A 2015 meta-analysis claimed that “when more complex assessments are used, modafinil appears to consistently engender enhancement of attention, executive functions, and learning” without affecting a user’s mood. In a study from earlier this year involving 39 male chess players, subjects taking modafinil were found to perform better in chess games played against a computer.

If you could take a drug to boost your brainpower, would you? This question, faced by Bradley Cooper’s character in the big-budget movie Limitless, is now facing students who are frantically revising for exams. Although they are nowhere near the strength of the drug shown in the film, mind-enhancing drugs are already on the pharmacy shelves, and many people are finding the promise of sharper thinking through chemistry highly seductive.
With something like creatine, you’d know if it helps you pump out another rep at the gym on a sustainable basis. With nootropics, you can easily trick yourself into believing they help your mindset. The ideal is to do a trial on yourself. Take identical looking nootropic pills and placebo pills for a couple weeks each, then see what the difference is. With only a third party knowing the difference, of course.
Another well-known smart drug classed as a cholinergic is Sulbutiamine, a synthetic derivative of thiamine which crosses the blood-brain barrier and has been shown to improve memory while reducing psycho-behavioral inhibition. While Sulbutiamine has been shown to exhibit cholinergic regulation within the hippocampus, the reasons for the drug’s discernable effects on the brain remain unclear. This smart drug, available over the counter as a nutritional supplement, has a long history of use, and appears to have no serious side effects at therapeutic levels.
Articles and information on this website may only be copied, reprinted, or redistributed with written permission (but please ask, we like to give written permission!) The purpose of this Blog is to encourage the free exchange of ideas. The entire contents of this website is based upon the opinions of Dave Asprey, unless otherwise noted. Individual articles are based upon the opinions of the respective authors, who may retain copyright as marked. The information on this website is not intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice. It is intended as a sharing of knowledge and information from the personal research and experience of Dave Asprey and the community. We will attempt to keep all objectionable messages off this site; however, it is impossible to review all messages immediately. All messages expressed on The Bulletproof Forum or the Blog, including comments posted to Blog entries, represent the views of the author exclusively and we are not responsible for the content of any message.
×