Factor analysis. The strategy: read in the data, drop unnecessary data, impute missing variables (data is too heterogeneous and collected starting at varying intervals to be clean), estimate how many factors would fit best, factor analyze, pick the ones which look like they match best my ideas of what productive is, extract per-day estimates, and finally regress LLLT usage on the selected factors to look for increases.
By the end of 2009, at least 25 studies reported surveys of college students’ rates of nonmedical stimulant use. Of the studies using relatively smaller samples, prevalence was, in chronological order, 16.6% (lifetime; Babcock & Byrne, 2000), 35.3% (past year; Low & Gendaszek, 2002), 13.7% (lifetime; Hall, Irwin, Bowman, Frankenberger, & Jewett, 2005), 9.2% (lifetime; Carroll, McLaughlin, & Blake, 2006), and 55% (lifetime, fraternity students only; DeSantis, Noar, & Web, 2009). Of the studies using samples of more than a thousand students, somewhat lower rates of nonmedical stimulant use were found, although the range extends into the same high rates as the small studies: 2.5% (past year, Ritalin only; Teter, McCabe, Boyd, & Guthrie, 2003), 5.4% (past year; McCabe & Boyd, 2005), 4.1% (past year; McCabe, Knight, Teter, & Wechsler, 2005), 11.2% (past year; Shillington, Reed, Lange, Clapp, & Henry, 2006), 5.9% (past year; Teter, McCabe, LaGrange, Cranford, & Boyd, 2006), 16.2% (lifetime; White, Becker-Blease, & Grace-Bishop, 2006), 1.7% (past month; Kaloyanides, McCabe, Cranford, & Teter, 2007), 10.8% (past year; Arria, O’Grady, Caldeira, Vincent, & Wish, 2008); 5.3% (MPH only, lifetime; Du-Pont, Coleman, Bucher, & Wilford, 2008); 34% (lifetime; DeSantis, Webb, & Noar, 2008), 8.9% (lifetime; Rabiner et al., 2009), and 7.5% (past month; Weyandt et al., 2009).
Cost-wise, the gum itself (~$5) is an irrelevant sunk cost and the DNB something I ought to be doing anyway. If the results are negative (which I’ll define as d<0.2), I may well drop nicotine entirely since I have no reason to expect other forms (patches) or higher doses (2mg+) to create new benefits. This would save me an annual expense of ~$40 with a net present value of <820 ($); even if we count the time-value of the 20 minutes for the 5 DNB rounds over 48 days (0.2 \times 48 \times 7.25 = 70), it’s still a clear profit to run a convincing experiment.
Both nootropics startups provide me with samples to try. In the case of Nootrobox, it is capsules called Sprint designed for a short boost of cognitive enhancement. They contain caffeine – the equivalent of about a cup of coffee, and L-theanine – about 10 times what is in a cup of green tea, in a ratio that is supposed to have a synergistic effect (all the ingredients Nootrobox uses are either regulated as supplements or have a “generally regarded as safe” designation by US authorities)
My predictions were substantially better than random chance7, so my default belief - that Adderall does affect me and (mostly) for the better - is borne out. I usually sleep very well and 3 separate incidents of horrible sleep in a few weeks seems rather unlikely (though I didn’t keep track of dates carefully enough to link the Zeo data with the Adderall data). Between the price and the sleep disturbances, I don’t think Adderall is personally worthwhile.
Proteus Digital Health (Redwood City, Calif.) offers an FDA-approved microchip—an ingestible pill that tracks medication-taking behavior and how the body is responding to medicine. Through the company’s Digital Health Feedback System, the sensor monitors blood flow, body temperature and other vital signs for people with heart problems, schizophrenia or Alzheimer’s disease.
Up to 20% of Ivy League college students have already tried “smart drugs,” so we can expect these pills to feature prominently in organizations (if they don’t already). After all, the pressure to perform is unlikely to disappear the moment students graduate. And senior employees with demanding jobs might find these drugs even more useful than a 19-year-old college kid does. Indeed, a 2012 Royal Society report emphasized that these “enhancements,” along with other technologies for self-enhancement, are likely to have far-reaching implications for the business world.
The abuse liability of caffeine has been evaluated.147,148 Tolerance development to the subjective effects of caffeine was shown in a study in which caffeine was administered at 300 mg twice each day for 18 days.148 Tolerance to the daytime alerting effects of caffeine, as measured by the MSLT, was shown over 2 days on which 250 g of caffeine was given twice each day48 and to the sleep-disruptive effects (but not REM percentage) over 7 days of 400 mg of caffeine given 3 times each day.7 In humans, placebo-controlled caffeine-discontinuation studies have shown physical dependence on caffeine, as evidenced by a withdrawal syndrome.147 The most frequently observed withdrawal symptom is headache, but daytime sleepiness and fatigue are also often reported. The withdrawal-syndrome severity is a function of the dose and duration of prior caffeine use…At higher doses, negative effects such as dysphoria, anxiety, and nervousness are experienced. The subjective-effect profile of caffeine is similar to that of amphetamine,147 with the exception that dysphoria/anxiety is more likely to occur with higher caffeine doses than with higher amphetamine doses. Caffeine can be discriminated from placebo by the majority of participants, and correct caffeine identification increases with dose.147 Caffeine is self-administered by about 50% of normal subjects who report moderate to heavy caffeine use. In post-hoc analyses of the subjective effects reported by caffeine choosers versus nonchoosers, the choosers report positive effects and the nonchoosers report negative effects. Interestingly, choosers also report negative effects such as headache and fatigue with placebo, and this suggests that caffeine-withdrawal syndrome, secondary to placebo choice, contributes to the likelihood of caffeine self-administration. This implies that physical dependence potentiates behavioral dependence to caffeine.

Smart Pill is a dietary supplement that blends vitamins, amino acids, and herbal extracts to sustain mental alertness, memory and concentration. One of the ingredients used in this formula is Vitamin B-1, also known as Thiamine, which sustains almost all functions present in the body, but plays a key role in brain health and function. A deficiency of this vitamin can lead to several neurological function problems. The most common use of Thiamine is to improve brain function; it acts as a neurotransmitter helping the brain prevent learning and memory disorders; it also provides help with mood disorders and offers stress relief.


Caffeine dose dependently decreased the 1,25(OH)(2)D(3) induced VDR expression and at concentrations of 1 and 10mM, VDR expression was decreased by about 50-70%, respectively. In addition, the 1,25(OH)(2)D(3) induced alkaline phosphatase activity was also reduced at similar doses thus affecting the osteoblastic function. The basal ALP activity was not affected with increasing doses of caffeine. Overall, our results suggest that caffeine affects 1,25(OH)(2)D(3) stimulated VDR protein expression and 1,25(OH)(2)D(3) mediated actions in human osteoblast cells.
as scientific papers become much more accessible online due to Open Access, digitization by publishers, and cheap hosting for pirates, the available knowledge about nootropics increases drastically. This reduces the perceived risk by users, and enables them to educate themselves and make much more sophisticated estimates of risk and side-effects and benefits. (Take my modafinil page: in 1997, how could an average person get their hands on any of the papers available up to that point? Or get detailed info like the FDA’s prescribing guide? Even assuming they had a computer & Internet?)
Several new medications are on the market and in development for Alzheimer's disease, a progressive neurological disease leading to memory loss, language deterioration, and confusion that afflicts about 4.5 million Americans and is expected to strike millions more as the baby boom generation ages. Yet the burning question for those who aren't staring directly into the face of Alzheimer's is whether these medications might make us smarter.
Up to 20% of Ivy League college students have already tried “smart drugs,” so we can expect these pills to feature prominently in organizations (if they don’t already). After all, the pressure to perform is unlikely to disappear the moment students graduate. And senior employees with demanding jobs might find these drugs even more useful than a 19-year-old college kid does. Indeed, a 2012 Royal Society report emphasized that these “enhancements,” along with other technologies for self-enhancement, are likely to have far-reaching implications for the business world.
Potassium citrate powder is neither expensive nor cheap: I purchased 453g for $21. The powder is crystalline white, dissolves instantly in water, and largely tasteless (sort of saline & slightly unpleasant). The powder is 37% potassium by weight (the formula is C6H5K3O7) so 453g is actually 167g of potassium, so 80-160 days’ worth depending on dose.
I ultimately mixed it in with the 3kg of piracetam and included it in that batch of pills. I mixed it very thoroughly, one ingredient at a time, so I’m not very worried about hot spots. But if you are, one clever way to get accurate caffeine measurements is to measure out a large quantity & dissolve it since it’s easier to measure water than powder, and dissolving guarantees even distribution. This can be important because caffeine is, like nicotine, an alkaloid poison which - the dose makes the poison - can kill in high doses, and concentrated powder makes it easy to take too much, as one inept Englishman discovered the hard way. (This dissolving trick is applicable to anything else that dissolves nicely.)
There is an ancient precedent to humans using natural compounds to elevate cognitive performance. Incan warriors in the 15th century would ingest coca leaves (the basis for cocaine) before battle. Ethiopian hunters in the 10th century developed coffee bean paste to improve hunting stamina. Modern athletes ubiquitously consume protein powders and hormones to enhance their training, recovery, and performance. The most widely consumed psychoactive compound today is caffeine. Millions of people use coffee and tea to be more alert and focused.
Another empirical question concerns the effects of stimulants on motivation, which can affect academic and occupational performance independent of cognitive ability. Volkow and colleagues (2004) showed that MPH increased participants’ self-rated interest in a relatively dull mathematical task. This is consistent with student reports that prescription stimulants make schoolwork seem more interesting (e.g., DeSantis et al., 2008). To what extent are the motivational effects of prescription stimulants distinct from their cognitive effects, and to what extent might they be more robust to differences in individual traits, dosage, and task? Are the motivational effects of stimulants responsible for their usefulness when taken by normal healthy individuals for cognitive enhancement?
“I cannot overstate how grateful I am to Cavin for having published this book (and launched his podcast) before I needed it. I am 3.5 months out from a concussion and struggling to recover that final 25% or so of my brain and function. I fully believe that diet and lifestyle can help heal many of our ills, and this book gives me a path forward right now. Gavin’s story is inspiring, and his book is well-researched and clearly written. I am a food geek and so innately understand a lot of his advice — I’m not intimidated by the thought of drastically changing my diet because I know well how to shop and cook for myself — but I so appreciate how his gentle approach and stories about his own struggles with a new diet might help people who would find it all daunting. I am in week 2 of following his advice (and also Dr. Titus Chiu’s BrainSave plan). It’s not an instantaneous miracle cure, but I do feel better in several ways that just might be related to this diet.”

From its online reputation and product presentation to our own product run, Synagen IQ smacks of mediocre performance. A complete list of ingredients could have been convincing and decent, but the lack of information paired with the potential for side effects are enough for beginners to old-timers in nootropic use to shy away and opt for more trusted and reputable brands. There is plenty that needs to be done to uplift the brand and improve its overall ranking in the widely competitive industry. Learn More...

But though it’s relatively new on the scene with ambitious young professionals, creatine has a long history with bodybuilders, who have been taking it for decades to improve their muscle #gains. In the US, sports supplements are a multibillion-dollar industry – and the majority contain creatine. According to a survey conducted by Ipsos Public Affairs last year, 22% of adults said they had taken a sports supplement in the last year. If creatine was going to have a major impact in the workplace, surely we would have seen some signs of this already.
Never heard of OptiMind before? This supplement promotes itself as an all-natural nootropic supplement that increases focus, improves memory, and enhances overall mental drive. The product first captured our attention when we noticed that their supplement blend contains a few of the same ingredients currently present in our editor’s #1 choice. So, of course, we grew curious to see whether their formula was as (un)successful as their initial branding techniques. Keep reading to find out what we discovered… Learn More...

Took pill 1:27 PM. At 2 my hunger gets the best of me (despite my usual tea drinking and caffeine+piracetam pills) and I eat a large lunch. This makes me suspicious it was placebo - on the previous days I had noted a considerable appetite-suppressant effect. 5:25 PM: I don’t feel unusually tired, but nothing special about my productivity. 8 PM; no longer so sure. Read and excerpted a fair bit of research I had been putting off since the morning. After putting away all the laundry at 10, still feeling active, I check. It was Adderall. I can’t claim this one either way. By 9 or 10 I had begun to wonder whether it was really Adderall, but I didn’t feel confident saying it was; my feeling could be fairly described as 50%.
There is no clear answer to this question. Many of the smart drugs have decades of medical research and widespread use behind them, as well as only minor, manageable, or nonexistent side effects, but are still used primarily as a crutch for people already experiencing cognitive decline, rather than as a booster-rocket for people with healthy brains. Unfortunately, there is a bias in Western medicine in favor of prescribing drugs once something bad has already begun, rather than for up-front prevention. There’s also the principle of “leave well enough alone” – in this case, extended to mean, don’t add unnecessary or unnatural drugs to the human body in place of a normal diet. [Smart Drug Smarts would argue that the average human diet has strayed so far from what is physiologically “normal” that leaving well enough alone is already a failed proposition.]

Use of prescription stimulants by normal healthy individuals to enhance cognition is said to be on the rise. Who is using these medications for cognitive enhancement, and how prevalent is this practice? Do prescription stimulants in fact enhance cognition for normal healthy people? We review the epidemiological and cognitive neuroscience literatures in search of answers to these questions. Epidemiological issues addressed include the prevalence of nonmedical stimulant use, user demographics, methods by which users obtain prescription stimulants, and motivations for use. Cognitive neuroscience issues addressed include the effects of prescription stimulants on learning and executive function, as well as the task and individual variables associated with these effects. Little is known about the prevalence of prescription stimulant use for cognitive enhancement outside of student populations. Among college students, estimates of use vary widely but, taken together, suggest that the practice is commonplace. The cognitive effects of stimulants on normal healthy people cannot yet be characterized definitively, despite the volume of research that has been carried out on these issues. Published evidence suggests that declarative memory can be improved by stimulants, with some evidence consistent with enhanced consolidation of memories. Effects on the executive functions of working memory and cognitive control are less reliable but have been found for at least some individuals on some tasks. In closing, we enumerate the many outstanding questions that remain to be addressed by future research and also identify obstacles facing this research.
Because executive functions tend to work in concert with one another, these three categories are somewhat overlapping. For example, tasks that require working memory also require a degree of cognitive control to prevent current stimuli from interfering with the contents of working memory, and tasks that require planning, fluency, and reasoning require working memory to hold the task goals in mind. The assignment of studies to sections was based on best fit, according to the aspects of executive function most heavily taxed by the task, rather than exclusive category membership. Within each section, studies are further grouped according to the type of task and specific type of learning, working memory, cognitive control, or other executive function being assessed.
Ashwagandha has been shown to improve cognition and motivation, by means of reducing anxiety [46]. It has been shown to significantly reduce stress and anxiety. As measured by cortisol levels, anxiety symptoms were reduced by around 30% compared to a placebo-controlled (double-blind) group [47]. And it may have neuroprotective effects and improve sleep, but these claims are still being researched.
The therapeutic effect of AMP and MPH in ADHD is consistent with the finding of abnormalities in the catecholamine system in individuals with ADHD (e.g., Volkow et al., 2007). Both AMP and MPH exert their effects on cognition primarily by increasing levels of catecholamines in prefrontal cortex and the cortical and subcortical regions projecting to it, and this mechanism is responsible for improving cognition and behavior in ADHD (Pliszka, 2005; Wilens, 2006).
Fish oil (Examine.com, buyer’s guide) provides benefits relating to general mood (eg. inflammation & anxiety; see later on anxiety) and anti-schizophrenia; it is one of the better supplements one can take. (The known risks are a higher rate of prostate cancer and internal bleeding, but are outweighed by the cardiac benefits - assuming those benefits exist, anyway, which may not be true.) The benefits of omega acids are well-researched.
At small effects like d=0.07, a nontrivial chance of negative effects, and an unknown level of placebo effects (this was non-blinded, which could account for any residual effects), this strongly implies that LLLT is not doing anything for me worth bothering with. I was pretty skeptical of LLLT in the first place, and if 167 days can’t turn up anything noticeable, I don’t think I’ll be continuing with LLLT usage and will be giving away my LED set. (Should any experimental studies of LLLT for cognitive enhancement in healthy people surface with large quantitative effects - as opposed to a handful of qualitative case studies about brain-damaged people - and I decide to give LLLT another try, I can always just buy another set of LEDs: it’s only ~$15, after all.)
Sarter is downbeat, however, about the likelihood of the pharmaceutical industry actually turning candidate smart drugs into products. Its interest in cognitive enhancers is shrinking, he says, “because these drugs are not working for the big indications, which is the market that drives these developments. Even adult ADHD has not been considered a sufficiently attractive large market.”
I had tried 8 randomized days like the Adderall experiment to see whether I was one of the people whom modafinil energizes during the day. (The other way to use it is to skip sleep, which is my preferred use.) I rarely use it during the day since my initial uses did not impress me subjectively. The experiment was not my best - while it was double-blind randomized, the measurements were subjective, and not a good measure of mental functioning like dual n-back (DNB) scores which I could statistically compare from day to day or against my many previous days of dual n-back scores. Between my high expectation of finding the null result, the poor experiment quality, and the minimal effect it had (eliminating an already rare use), the value of this information was very small.

We’d want 53 pairs, but Fitzgerald 2012’s experimental design called for 32 weeks of supplementation for a single pair of before-after tests - so that’d be 1664 weeks or ~54 months or ~4.5 years! We can try to adjust it downwards with shorter blocks allowing more frequent testing; but problematically, iodine is stored in the thyroid and can apparently linger elsewhere - many of the cited studies used intramuscular injections of iodized oil (as opposed to iodized salt or kelp supplements) because this ensured an adequate supply for months or years with no further compliance by the subjects. If the effects are that long-lasting, it may be worthless to try shorter blocks than ~32 weeks.


“Cavin Balaster knows brain injury as well as any specialist. He survived a horrific accident and came out on the other side stronger than ever. His book, “How To Feed A Brain” details how changing his diet helped him to recover further from the devastating symptoms of brain injury such as fatigue and brain fog. Cavin is able to thoroughly explain complex issues in a simplified manner so the reader does not need a medical degree to understand. The book also includes comprehensive charts to simplify what the body needs and how to provide the necessary foods. “How To Feed A Brain” is a great resource for anyone looking to improve their health through diet, brain injury not required.”
Furthermore, there is no certain way to know whether you’ll have an adverse reaction to a particular substance, even if it’s natural. This risk is heightened when stacking multiple substances because substances can have synergistic effects, meaning one substance can heighten the effects of another. However, using nootropic stacks that are known to have been frequently used can reduce the chances of any negative side effects.
Elaborating on why the psychological side effects of testosterone injection are individual dependent: Not everyone get the same amount of motivation and increased goal seeking from the steroid and most people do not experience periods of chronic avolition. Another psychological effect is a potentially drastic increase in aggression which in turn can have negative social consequences. In the case of counterfactual Wedrifid he gets a net improvement in social consequences. He has observed that aggression and anger are a prompt for increased ruthless self-interested goal seeking. Ruthless self-interested goal seeking involves actually bothering to pay attention to social politics. People like people who do social politics well. Most particularly it prevents acting on contempt which is what Wedrifid finds prompts the most hostility and resentment in others. Point is, what is a sanity promoting change in one person may not be in another.
This calculation - reaping only \frac{7}{9} of the naive expectation - gives one pause. How serious is the sleep rebound? In another article, I point to a mice study that sleep deficits can take 28 days to repay. What if the gain from modafinil is entirely wiped out by repayment and all it did was defer sleep? Would that render modafinil a waste of money? Perhaps. Thinking on it, I believe deferring sleep is of some value, but I cannot decide whether it is a net profit.
Overall, the studies listed in Table 1 vary in ways that make it difficult to draw precise quantitative conclusions from them, including their definitions of nonmedical use, methods of sampling, and demographic characteristics of the samples. For example, some studies defined nonmedical use in a way that excluded anyone for whom a drug was prescribed, regardless of how and why they used it (Carroll et al., 2006; DeSantis et al., 2008, 2009; Kaloyanides et al., 2007; Low & Gendaszek, 2002; McCabe & Boyd, 2005; McCabe et al., 2004; Rabiner et al., 2009; Shillington et al., 2006; Teter et al., 2003, 2006; Weyandt et al., 2009), whereas others focused on the intent of the user and counted any use for nonmedical purposes as nonmedical use, even if the user had a prescription (Arria et al., 2008; Babcock & Byrne, 2000; Boyd et al., 2006; Hall et al., 2005; Herman-Stahl et al., 2007; Poulin, 2001, 2007; White et al., 2006), and one did not specify its definition (Barrett, Darredeau, Bordy, & Pihl, 2005). Some studies sampled multiple institutions (DuPont et al., 2008; McCabe & Boyd, 2005; Poulin, 2001, 2007), some sampled only one (Babcock & Byrne, 2000; Barrett et al., 2005; Boyd et al., 2006; Carroll et al., 2006; Hall et al., 2005; Kaloyanides et al., 2007; McCabe & Boyd, 2005; McCabe et al., 2004; Shillington et al., 2006; Teter et al., 2003, 2006; White et al., 2006), and some drew their subjects primarily from classes in a single department at a single institution (DeSantis et al., 2008, 2009; Low & Gendaszek, 2002). With few exceptions, the samples were all drawn from restricted geographical areas. Some had relatively high rates of response (e.g., 93.8%; Low & Gendaszek 2002) and some had low rates (e.g., 10%; Judson & Langdon, 2009), the latter raising questions about sample representativeness for even the specific population of students from a given region or institution.

Jesper Noehr, 30, reels off the ingredients in the chemical cocktail he’s been taking every day before work for the past six months. It’s a mixture of exotic dietary supplements and research chemicals that he says gives him an edge in his job without ill effects: better memory, more clarity and focus and enhanced problem-solving abilities. “I can keep a lot of things on my mind at once,” says Noehr, who is chief technology officer for a San Francisco startup.
My first time was relatively short: 10 minutes around the F3/F4 points, with another 5 minutes to the forehead. Awkward holding it up against one’s head, and I see why people talk of LED helmets, it’s boring waiting. No initial impressions except maybe feeling a bit mentally cloudy, but that goes away within 20 minutes of finishing when I took a nap outside in the sunlight. Lostfalco says Expectations: You will be tired after the first time for 2 to 24 hours. It’s perfectly normal., but I’m not sure - my dog woke me up very early and disturbed my sleep, so maybe that’s why I felt suddenly tired. On the second day, I escalated to 30 minutes on the forehead, and tried an hour on my finger joints. No particular observations except less tiredness than before and perhaps less joint ache. Third day: skipped forehead stimulation, exclusively knee & ankle. Fourth day: forehead at various spots for 30 minutes; tiredness 5/6/7/8th day (11/12/13/4): skipped. Ninth: forehead, 20 minutes. No noticeable effects.
Some work has been done on estimating the value of IQ, both as net benefits to the possessor (including all zero-sum or negative-sum aspects) and as net positive externalities to the rest of society. The estimates are substantial: in the thousands of dollars per IQ point. But since increasing IQ post-childhood is almost impossible barring disease or similar deficits, and even increasing childhood IQs is very challenging, much of these estimates are merely correlations or regressions, and the experimental childhood estimates must be weakened considerably for any adult - since so much time and so many opportunities have been lost. A wild guess: $1000 net present value per IQ point. The range for severely deficient children was 10-15 points, so any normal (somewhat deficient) adult gain must be much smaller and consistent with Fitzgerald 2012’s ceiling on possible effect sizes (small).
Yet some researchers point out these drugs may not be enhancing cognition directly, but simply improving the user’s state of mind – making work more pleasurable and enhancing focus. “I’m just not seeing the evidence that indicates these are clear cognition enhancers,” says Martin Sarter, a professor at the University of Michigan, who thinks they may be achieving their effects by relieving tiredness and boredom. “What most of these are actually doing is enabling the person who’s taking them to focus,” says Steven Rose, emeritus professor of life sciences at the Open University. “It’s peripheral to the learning process itself.”
Studies show that B vitamin supplements can protect the brain from cognitive decline. These natural nootropics can also reduce the likelihood of developing neurodegenerative diseases. The prevention of Alzheimer’s and even dementia are among the many benefits. Due to their effects on mental health, B vitamins make an excellent addition to any smart drug stack.
Chocolate or cocoa powder (Examine.com), contains the stimulants caffeine and the caffeine metabolite theobromine, so it’s not necessarily surprising if cocoa powder was a weak stimulant. It’s also a witch’s brew of chemicals such as polyphenols and flavonoids some of which have been fingered as helpful10, which all adds up to an unclear impact on health (once you control for eating a lot of sugar).

Smart drug, also called nootropic or cognitive enhancer, any of a group of pharmaceutical agents used to improve the intellectual capacity of persons suffering from neurological diseases and psychological disorders. The use of such drugs by healthy individuals in order to improve concentration, to study longer, and to better manage stress is a subject of controversy.
Prescription smart pills are common psychostimulants that can be purchased and used after receiving a prescription. They are most commonly given to patients diagnosed with ADD or ADHD, as well as narcolepsy. However many healthy people use them as cognitive enhancers due to their proven ability to improve focus, attention, and support the overall process of learning.
Systematic reviews and meta-analyses of clinical human research using low doses of certain central nervous system stimulants found enhanced cognition in healthy people.[21][22][23] In particular, the classes of stimulants that demonstrate cognition-enhancing effects in humans act as direct agonists or indirect agonists of dopamine receptor D1, adrenoceptor A2, or both types of receptor in the prefrontal cortex.[21][22][24][25] Relatively high doses of stimulants cause cognitive deficits.[24][25]
×