Modafinil is a eugeroic, or ‘wakefulness promoting agent’, intended to help people with narcolepsy. It was invented in the 1970s, but was first approved by the American FDA in 1998 for medical use. Recent years have seen its off-label use as a ‘smart drug’ grow. It’s not known exactly how Modafinil works, but scientists believe it may increase levels of histamines in the brain, which can keep you awake. It might also inhibit the dissipation of dopamine, again helping wakefulness, and it may help alertness by boosting norepinephrine levels, contributing to its reputation as a drug to help focus and concentration.


Yet some researchers point out these drugs may not be enhancing cognition directly, but simply improving the user’s state of mind – making work more pleasurable and enhancing focus. “I’m just not seeing the evidence that indicates these are clear cognition enhancers,” says Martin Sarter, a professor at the University of Michigan, who thinks they may be achieving their effects by relieving tiredness and boredom. “What most of these are actually doing is enabling the person who’s taking them to focus,” says Steven Rose, emeritus professor of life sciences at the Open University. “It’s peripheral to the learning process itself.”

Jesper Noehr, 30, reels off the ingredients in the chemical cocktail he’s been taking every day before work for the past six months. It’s a mixture of exotic dietary supplements and research chemicals that he says gives him an edge in his job without ill effects: better memory, more clarity and focus and enhanced problem-solving abilities. “I can keep a lot of things on my mind at once,” says Noehr, who is chief technology officer for a San Francisco startup.
Ongoing studies are looking into the possible pathways by which nootropic substances function. Researchers have postulated that the mental health advantages derived from these substances can be attributed to their effects on the cholinergic and dopaminergic systems of the brain. These systems regulate two important neurotransmitters, acetylcholine and dopamine.
Analyzing the results is a little tricky because I was simultaneously running the first magnesium citrate self-experiment, which turned out to cause a quite complex result which looks like a gradually-accumulating overdose negating an initial benefit for net harm, and also toying with LLLT, which turned out to have a strong correlation with benefits. So for the potential small Noopept effect to not be swamped, I need to include those in the analysis. I designed the experiment to try to find the best dose level, so I want to look at an average Noopept effect but also the estimated effect at each dose size in case some are negative (especially in the case of 5-pills/60mg); I included the pilot experiment data as 10mg doses since they were also blind & randomized. Finally, missingness affects analysis: because not every variable is recorded for each date (what was the value of the variable for the blind randomized magnesium citrate before and after I finished that experiment? what value do you assign the Magtein variable before I bought it and after I used it all up?), just running a linear regression may not work exactly as one expects as various days get omitted because part of the data was missing.
28,61,36,25,61,57,39,56,23,37,24,50,54,32,50,33,16,42,41,40,34,33,31,65,23,36,29,51,46,31,45,52,30, 50,29,36,57,60,34,48,32,41,48,34,51,40,53,73,56,53,53,57,46,50,35,50,60,62,30,60,48,46,52,60,60,48, 47,34,50,51,45,54,70,48,61,43,53,60,44,57,50,50,52,37,55,40,53,48,50,52,44,50,50,38,43,66,40,24,67, 60,71,54,51,60,41,58,20,28,42,53,59,42,31,60,42,58,36,48,53,46,25,53,57,60,35,46,32,26,68,45,20,51, 56,48,25,62,50,54,47,42,55,39,60,44,32,50,34,60,47,70,68,38,47,48,70,51,42,41,35,36,39,23,50,46,44,56,50,39

Systematic reviews and meta-analyses of clinical human research using low doses of certain central nervous system stimulants found enhanced cognition in healthy people.[21][22][23] In particular, the classes of stimulants that demonstrate cognition-enhancing effects in humans act as direct agonists or indirect agonists of dopamine receptor D1, adrenoceptor A2, or both types of receptor in the prefrontal cortex.[21][22][24][25] Relatively high doses of stimulants cause cognitive deficits.[24][25]

×