I have no particularly compelling story for why this might be a correlation and not causation. It could be placebo, but I wasn’t expecting that. It could be selection effect (days on which I bothered to use the annoying LED set are better days) but then I’d expect the off-days to be below-average and compared to the 2 years of trendline before, there doesn’t seem like much of a fall.
But though it’s relatively new on the scene with ambitious young professionals, creatine has a long history with bodybuilders, who have been taking it for decades to improve their muscle #gains. In the US, sports supplements are a multibillion-dollar industry – and the majority contain creatine. According to a survey conducted by Ipsos Public Affairs last year, 22% of adults said they had taken a sports supplement in the last year. If creatine was going to have a major impact in the workplace, surely we would have seen some signs of this already.
(We already saw that too much iodine could poison both adults and children, and of course too little does not help much - iodine would seem to follow a U-curve like most supplements.) The listed doses at iherb.com often are ridiculously large: 10-50mg! These are doses that seems to actually be dangerous for long-term consumption, and I believe these are doses that are designed to completely suffocate the thyroid gland and prevent it from absorbing any more iodine - which is useful as a short-term radioactive fallout prophylactic, but quite useless from a supplementation standpoint. Fortunately, there are available doses at Fitzgerald 2012’s exact dose, which is roughly the daily RDA: 0.15mg. Even the contrarian materials seem to focus on a modest doubling or tripling of the existing RDA, so the range seems relatively narrow. I’m fairly confident I won’t overshoot if I go with 0.15-1mg, so let’s call this 90%.

Organizations, and even entire countries, are struggling with “always working” cultures. Germany and France have adopted rules to stop employees from reading and responding to email after work hours. Several companies have explored banning after-hours email; when one Italian company banned all email for one week, stress levels dropped among employees. This is not a great surprise: A Gallup study found that among those who frequently check email after working hours, about half report having a lot of stress.


Spaced repetition at midnight: 3.68. (Graphing preceding and following days: ▅▄▆▆▁▅▆▃▆▄█ ▄ ▂▄▄▅) DNB starting 12:55 AM: 30/34/41. Transcribed Sawaragi 2005, then took a walk. DNB starting 6:45 AM: 45/44/33. Decided to take a nap and then take half the armodafinil on awakening, before breakfast. I wound up oversleeping until noon (4:28); since it was so late, I took only half the armodafinil sublingually. I spent the afternoon learning how to do value of information calculations, and then carefully working through 8 or 9 examples for my various pages, which I published on Lesswrong. That was a useful little project. DNB starting 12:09 AM: 30/38/48. (To graph the preceding day and this night: ▇▂█▆▅▃▃▇▇▇▁▂▄ ▅▅▁▁▃▆) Nights: 9:13; 7:24; 9:13; 8:20; 8:31.

ADMISSIONSUNDERGRADUATE GRADUATE CONTINUING EDUCATION RESEARCHDIVISIONS RESEARCH IMPACT LIBRARIES INNOVATION AND PARTNERSHIP SUPPORT FOR RESEARCHERS RESEARCH IN CONVERSATION PUBLIC ENGAGEMENT WITH RESEARCH NEWS & EVENTSEVENTS SCIENCE BLOG ARTS BLOG OXFORD AND BREXIT NEWS RELEASES FOR JOURNALISTS FILMING IN OXFORD FIND AN EXPERT ABOUTORGANISATION FACTS AND FIGURES OXFORD PEOPLE OXFORD ACCESS INTERNATIONAL OXFORD BUILDING OUR FUTURE JOBS 牛津大学Staff Oxford students Alumni Visitors Local community


Core body temperature, local pH and internal pressure are important indicators of patient well-being. While a thermometer can give an accurate reading during regular checkups, the monitoring of professionals in high-intensity situations requires a more accurate inner body temperature sensor. An ingestible chemical sensor can record acidity and pH levels along the gastrointestinal tract to screen for ulcers or tumors. Sensors also can be built into medications to track compliance.
Rabiner et al. (2009) 2007 One public and one private university undergraduates (N = 3,390) 8.9% (while in college), 5.4% (past 6 months) Most common reasons endorsed: to concentrate better while studying, to be able to study longer, to feel less restless while studying 48%: from a friend with a prescription; 19%: purchased it from a friend with a prescription; 6%: purchased it from a friend without a prescription
Caveats aside, if you do want to try a nootropic, consider starting with something simple and pretty much risk-free, like aromatherapy with lemon essential oil or frankincense, which can help activate your brain, Barbour says. You could also sip on "golden milk," a sweet and anti-inflammatory beverage made with turmeric, or rosemary-infused water, she adds.
Ongoing studies are looking into the possible pathways by which nootropic substances function. Researchers have postulated that the mental health advantages derived from these substances can be attributed to their effects on the cholinergic and dopaminergic systems of the brain. These systems regulate two important neurotransmitters, acetylcholine and dopamine.
If you’re concerned with using either supplement, speak to your doctor. Others will replace these supplements with something like Phenylpiracetam or Pramiracetam. Both of these racetams provide increased energy levels, yielding less side-effects. If you do plan on taking Modafinil or Adrafinil, it’s best to use them on occasion or cycle your doses.
A key ingredient of Noehr’s chemical “stack” is a stronger racetam called Phenylpiracetam. He adds a handful of other compounds considered to be mild cognitive enhancers. One supplement, L-theanine, a natural constituent in green tea, is claimed to neutralise the jittery side-effects of caffeine. Another supplement, choline, is said to be important for experiencing the full effects of racetams. Each nootropic is distinct and there can be a lot of variation in effect from person to person, says Lawler. Users semi-annonymously compare stacks and get advice from forums on sites such as Reddit. Noehr, who buys his powder in bulk and makes his own capsules, has been tweaking chemicals and quantities for about five years accumulating more than two dozens of jars of substances along the way. He says he meticulously researches anything he tries, buys only from trusted suppliers and even blind-tests the effects (he gets his fiancée to hand him either a real or inactive capsule).

The goal of this article has been to synthesize what is known about the use of prescription stimulants for cognitive enhancement and what is known about the cognitive effects of these drugs. We have eschewed discussion of ethical issues in favor of simply trying to get the facts straight. Although ethical issues cannot be decided on the basis of facts alone, neither can they be decided without relevant facts. Personal and societal values will dictate whether success through sheer effort is as good as success with pharmacologic help, whether the freedom to alter one’s own brain chemistry is more important than the right to compete on a level playing field at school and work, and how much risk of dependence is too much risk. Yet these positions cannot be translated into ethical decisions in the real world without considerable empirical knowledge. Do the drugs actually improve cognition? Under what circumstances and for whom? Who will be using them and for what purposes? What are the mental and physical health risks for frequent cognitive-enhancement users? For occasional users?
In 2011, as part of the Silk Road research, I ordered 10x100mg Modalert (5btc) from a seller. I also asked him about his sourcing, since if it was bad, it’d be valuable to me to know whether it was sourced from one of the vendors listed in my table. He replied, more or less, I get them from a large Far Eastern pharmaceuticals wholesaler. I think they’re probably the supplier for a number of the online pharmacies. 100mg seems likely to be too low, so I treated this shipment as 5 doses:
Cytisine is not known as a stimulant and I’m not addicted to nicotine, so why give it a try? Nicotine is one of the more effective stimulants available, and it’s odd how few nicotine analogues or nicotinic agonists there are available; nicotine has a few flaws like short half-life and increasing blood pressure, so I would be interested in a replacement. The nicotine metabolite cotinine, in the human studies available, looks intriguing and potentially better, but I have been unable to find a source for it. One of the few relevant drugs which I can obtain is cytisine, from Ceretropic, at 2x1.5mg doses. There are not many anecdotal reports on cytisine, but at least a few suggest somewhat comparable effects with nicotine, so I gave it a try.
The title question, whether prescription stimulants are smart pills, does not find a unanimous answer in the literature. The preponderance of evidence is consistent with enhanced consolidation of long-term declarative memory. For executive function, the overall pattern of evidence is much less clear. Over a third of the findings show no effect on the cognitive processes of healthy nonelderly adults. Of the rest, most show enhancement, although impairment has been reported (e.g., Rogers et al., 1999), and certain subsets of participants may experience impairment (e.g., higher performing participants and/or those homozygous for the met allele of the COMT gene performed worse on drug than placebo; Mattay et al., 2000, 2003). Whereas the overall trend is toward enhancement of executive function, the literature contains many exceptions to this trend. Furthermore, publication bias may lead to underreporting of these exceptions.

What if you could simply take a pill that would instantly make you more intelligent? One that would enhance your cognitive capabilities including attention, memory, focus, motivation and other higher executive functions? If you have ever seen the movie Limitless, you have an idea of what this would look like—albeit the exaggerated Hollywood version. The movie may be fictional but the reality may not be too far behind.
…The first time I took supplemental potassium (50% US RDA in a lot of water), it was like a brain fog lifted that I never knew I had, and I felt profoundly energized in a way that made me feel exercise was reasonable and prudent, which resulted in me and the roommate that had just supplemented potassium going for an hour long walk at 2AM. Experiences since then have not been quite so profound (which probably was so stark for me as I was likely fixing an acute deficiency), but I can still count on a moderately large amount of potassium to give me a solid, nearly side effect free performance boost for a few hours…I had been doing Bikram yoga on and off, and I think I wasn’t keeping up the practice because I wasn’t able to properly rehydrate myself.
The intradimensional– extradimensional shift task from the CANTAB battery was used in two studies of MPH and measures the ability to shift the response criterion from one dimension to another, as in the WCST, as well as to measure other abilities, including reversal learning, measured by performance in the trials following an intradimensional shift. With an intradimensional shift, the learned association between values of a given stimulus dimension and reward versus no reward is reversed, and participants must learn to reverse their responses accordingly. Elliott et al. (1997) reported finding no effects of the drug on ability to shift among dimensions in the extradimensional shift condition and did not describe performance on the intradimensional shift. Rogers et al. (1999) found that accuracy improved but responses slowed with MPH on trials requiring a shift from one dimension to another, which leaves open the question of whether the drug produced net enhancement, interference, or neither on these trials once the tradeoff between speed and accuracy is taken into account. For intradimensional shifts, which require reversal learning, these authors found drug-induced impairment: significantly slower responding accompanied by a borderline-significant impairment of accuracy.

Methylphenidate, commonly known as Ritalin, is a stimulant first synthesised in the 1940s. More accurately, it’s a psychostimulant - often prescribed for ADHD - that is intended as a drug to help focus and concentration. It also reduces fatigue and (potentially) enhances cognition. Similar to Modafinil, Ritalin is believed to reduce dissipation of dopamine to help focus. Ritalin is a Class B drug in the UK, and possession without a prescription can result in a 5 year prison sentence. Please note: Side Effects Possible. See this article for more on Ritalin.


The price is not as good as multivitamins or melatonin. The studies showing effects generally use pretty high dosages, 1-4g daily. I took 4 capsules a day for roughly 4g of omega acids. The jar of 400 is 100 days’ worth, and costs ~$17, or around 17¢ a day. The general health benefits push me over the edge of favoring its indefinite use, but looking to economize. Usually, small amounts of packaged substances are more expensive than bulk unprocessed, so I looked at fish oil fluid products; and unsurprisingly, liquid is more cost-effective than pills (but like with the powders, straight fish oil isn’t very appetizing) in lieu of membership somewhere or some other price-break. I bought 4 bottles (16 fluid ounces each) for $53.31 total (thanks to coupons & sales), and each bottle lasts around a month and a half for perhaps half a year, or ~$100 for a year’s supply. (As it turned out, the 4 bottles lasted from 4 December 2010 to 17 June 2011, or 195 days.) My next batch lasted 19 August 2011-20 February 2012, and cost $58.27. Since I needed to buy empty 00 capsules (for my lithium experiment) and a book (Stanovich 2010, for SIAI work) from Amazon, I bought 4 more bottles of 16fl oz Nature’s Answer (lemon-lime) at $48.44, which I began using 27 February 2012. So call it ~$70 a year.
A big part is that we are finally starting to apply complex systems science to psycho-neuro-pharmacology and a nootropic approach. The neural system is awesomely complex and old-fashioned reductionist science has a really hard time with complexity. Big companies spends hundreds of millions of dollars trying to separate the effects of just a single molecule from placebo – and nootropics invariably show up as “stacks” of many different ingredients (ours, Qualia , currently has 42 separate synergistic nootropics ingredients from alpha GPC to bacopa monnieri and L-theanine). That kind of complex, multi pathway input requires a different methodology to understand well that goes beyond simply what’s put in capsules.

Taking the tryptophan is fairly difficult. The powder as supplied by Bulk Nutrition is extraordinarily dry and fine; it seems to be positively hydrophobic. The first time I tried to swallow a teaspoon, I nearly coughed it out - the power had seemed to explode in my mouth and go down my lungs. Thenceforth I made sure to have a mouth of water first. After a while, I took a different tack: I mixed in as much Hericium as would fit in the container. The mushroom powder is wetter and chunkier than the tryptophan, and seems to reduce the problem. Combining the mix with chunks of melatonin inside a pill works even better.
I ultimately mixed it in with the 3kg of piracetam and included it in that batch of pills. I mixed it very thoroughly, one ingredient at a time, so I’m not very worried about hot spots. But if you are, one clever way to get accurate caffeine measurements is to measure out a large quantity & dissolve it since it’s easier to measure water than powder, and dissolving guarantees even distribution. This can be important because caffeine is, like nicotine, an alkaloid poison which - the dose makes the poison - can kill in high doses, and concentrated powder makes it easy to take too much, as one inept Englishman discovered the hard way. (This dissolving trick is applicable to anything else that dissolves nicely.)
“Love this book! Still reading and can’t wait to see what else I learn…and I am not brain injured! Cavin has already helped me to take steps to address my food sensitivity…seems to be helping and I am only on day 5! He has also helped me to help a family member who has suffered a stroke. Thank you Cavin, for sharing all your knowledge and hard work with us! This book is for anyone that wants to understand and implement good nutrition with all the latest research to back it up. Highly recommend!”
There are hundreds of cognitive enhancing pills (so called smart pills) on the market that simply do NOT work! With each of them claiming they are the best, how can you find the brain enhancing supplements that are both safe and effective? Our top brain enhancing pills have been picked by sorting and ranking the top brain enhancing products yourself. Our ratings are based on the following criteria.

It is known that American college students have embraced cognitive enhancement, and some information exists about the demographics of the students most likely to practice cognitive enhancement with prescription stimulants. Outside of this narrow segment of the population, very little is known. What happens when students graduate and enter the world of work? Do they continue using prescription stimulants for cognitive enhancement in their first jobs and beyond? How might the answer to this question depend on occupation? For those who stay on campus to pursue graduate or professional education, what happens to patterns of use? To what extent do college graduates who did not use stimulants as students begin to use them for cognitive enhancement later in their careers? To what extent do workers without college degrees use stimulants to enhance job performance? How do the answers to these questions differ for countries outside of North America, where the studies of Table 1 were carried out?


So with these 8 results in hand, what do I think? Roughly, I was right 5 of the days and wrong 3 of them. If not for the sleep effect on #4, which is - in a way - cheating (one hopes to detect modafinil due to good effects), the ratio would be 5:4 which is awfully close to a coin-flip. Indeed, a scoring rule ranks my performance at almost identical to a coin flip: -5.49 vs -5.5419. (The bright side is that I didn’t do worse than a coin flip: I was at least calibrated.)
Schroeder, Mann-Koepke, Gualtieri, Eckerman, and Breese (1987) assessed the performance of subjects on placebo and MPH in a game that allowed subjects to switch between two different sectors seeking targets to shoot. They did not observe an effect of the drug on overall level of performance, but they did find fewer switches between sectors among subjects who took MPH, and perhaps because of this, these subjects did not develop a preference for the more fruitful sector.
Maj. Jamie Schwandt, USAR, is a logistics officer and has served as an operations officer, planner and commander. He is certified as a Department of the Army Lean Six Sigma Master Black Belt, certified Red Team Member, and holds a doctorate from Kansas State University. This article represents his own personal views, which are not necessarily those of the Department of the Army.
I have personally found that with respect to the NOOTROPIC effect(s) of all the RACETAMS, whilst I have experienced improvements in concentration and working capacity / productivity, I have never experienced a noticeable ongoing improvement in memory. COLURACETAM is the only RACETAM that I have taken wherein I noticed an improvement in MEMORY, both with regards to SHORT-TERM and MEDIUM-TERM MEMORY. To put matters into perspective, the memory improvement has been mild, yet still significant; whereas I have experienced no such improvement at all with the other RACETAMS.
It is known that American college students have embraced cognitive enhancement, and some information exists about the demographics of the students most likely to practice cognitive enhancement with prescription stimulants. Outside of this narrow segment of the population, very little is known. What happens when students graduate and enter the world of work? Do they continue using prescription stimulants for cognitive enhancement in their first jobs and beyond? How might the answer to this question depend on occupation? For those who stay on campus to pursue graduate or professional education, what happens to patterns of use? To what extent do college graduates who did not use stimulants as students begin to use them for cognitive enhancement later in their careers? To what extent do workers without college degrees use stimulants to enhance job performance? How do the answers to these questions differ for countries outside of North America, where the studies of Table 1 were carried out?
(I was more than a little nonplussed when the mushroom seller included a little pamphlet educating one about how papaya leaves can cure cancer, and how I’m shortening my life by decades by not eating many raw fruits & vegetables. There were some studies cited, but usually for points disconnected from any actual curing or longevity-inducing results.)
To judge from recent reports in the popular media, healthy people have also begun to use MPH and AMPs for cognitive enhancement. Major daily newspapers such as The New York Times, The LA Times, and The Wall Street Journal; magazines including Time, The Economist, The New Yorker, and Vogue; and broadcast news organizations including the BBC, CNN, and NPR have reported a trend toward growing use of prescription stimulants by healthy people for the purpose of enhancing school or work performance.
That is, perhaps light of the right wavelength can indeed save the brain some energy by making it easier to generate ATP. Would 15 minutes of LLLT create enough ATP to make any meaningful difference, which could possibly cause the claimed benefits? The problem here is like that of the famous blood-glucose theory of willpower - while the brain does indeed use up more glucose while active, high activity uses up very small quantities of glucose/energy which doesn’t seem like enough to justify a mental mechanism like weak willpower.↩
Some smart drugs can be found in health food stores; others are imported or are drugs that are intended for other disorders such as Alzheimer's disease and Parkinson's disease. There are many Internet web sites, books, magazines and newspaper articles detailing the supposed effects of smart drugs. There are also plenty of advertisements and mail-order businesses that try to sell "smart drugs" to the public. However, rarely do these businesses or the popular press report results that show the failure of smart drugs to improve memory or learning. Rather, they try to show that their products have miraculous effects on the brain and can improve mental functioning. Wouldn't it be easy to learn something by "popping a pill" or drinking a soda laced with a smart drug? This would be much easier than taking the time to study. Feeling dull? Take your brain in for a mental tune up by popping a pill!
But how to blind myself? I used my pill maker to make 9 OO pills of piracetam mix, and then 9 OO pills of piracetam mix+the Adderall, then I put them in a baggy. The idea is that I can blind myself as to what pill I am taking that day since at the end of the day, I can just look in the baggy and see whether a placebo or Adderall pill is missing: the big capsules are transparent so I can see whether there is a crushed-up blue Adderall in the end or not. If there are fewer Adderall than placebo, I took an Adderall, and vice-versa. Now, since I am checking at the end of each day, I also need to remove or add the opposite pill to maintain the ratio and make it easy to check the next day; more importantly I need to replace or remove a pill, because otherwise the odds will be skewed and I will know how they are skewed. (Imagine I started with 4 Adderalls and 4 placebos, and then 3 days in a row I draw placebos but I don’t add or remove any pills; the next day, because most of the placebos have been used up, there’s only a small chance I will get a placebo…)
Accordingly, we searched the literature for studies in which MPH or d-AMP was administered orally to nonelderly adults in a placebo-controlled design. Some of the studies compared the effects of multiple drugs, in which case we report only the results of stimulant–placebo comparisons; some of the studies compared the effects of stimulants on a patient group and on normal control subjects, in which case we report only the results for control subjects. The studies varied in many other ways, including the types of tasks used, the specific drug used, the way in which dosage was determined (fixed dose or weight-dependent dose), sample size, and subject characteristics (e.g., age, college sample or not, gender). Our approach to the classic splitting versus lumping dilemma has been to take a moderate lumping approach. We group studies according to the general type of cognitive process studied and, within that grouping, the type of task. The drug and dose are reported, as well as sample characteristics, but in the absence of pronounced effects of these factors, we do not attempt to make generalizations about them.
A number of different laboratory studies have assessed the acute effect of prescription stimulants on the cognition of normal adults. In the next four sections, we review this literature, with the goal of answering the following questions: First, do MPH (e.g., Ritalin) and d-AMP (by itself or as the main ingredient in Adderall) improve cognitive performance relative to placebo in normal healthy adults? Second, which cognitive systems are affected by these drugs? Third, how do the effects of the drugs depend on the individual using them?
Research on animals has shown that intermittent fasting — limiting caloric intake at least two days a week — can help improve neural connections in the hippocampus and protect against the accumulation of plaque, a protein prevalent in the brains of people with Alzheimer’s disease. Research has also shown that intermittent fasting helped reduce anxiety in mice.

In nootropic stacks, it’s almost always used as a counterbalance to activating ingredients like caffeine. L-Theanine, in combination with caffeine, increases alertness, reaction time, and general attention [40, 41]. At the same time, it reduces possible headaches and removes the jitteriness caused by caffeine [42]. It takes the edge of other nootropic compounds.


As mentioned earlier, cognitive control is needed not only for inhibiting actions, but also for shifting from one kind of action or mental set to another. The WCST taxes cognitive control by requiring the subject to shift from sorting cards by one dimension (e.g., shape) to another (e.g., color); failures of cognitive control in this task are manifest as perseverative errors in which subjects continue sorting by the previously successful dimension. Three studies included the WCST in their investigations of the effects of d-AMP on cognition (Fleming et al., 1995; Mattay et al., 1996, 2003), and none revealed overall effects of facilitation. However, Mattay et al. (2003) subdivided their subjects according to COMT genotype and found differences in both placebo performance and effects of the drug. Subjects who were homozygous for the val allele (associated with lower prefrontal dopamine activity) made more perseverative errors on placebo than other subjects and improved significantly with d-AMP. Subjects who were homozygous for the met allele performed best on placebo and made more errors on d-AMP.

l-Theanine – A 2014 systematic review and meta-analysis found that concurrent caffeine and l-theanine use had synergistic psychoactive effects that promoted alertness, attention, and task switching;[29] these effects were most pronounced during the first hour post-dose.[29] However, the European Food Safety Authority reported that, when L-theanine is used by itself (i.e. without caffeine), there is insufficient information to determine if these effects exist.[34]
×