More photos from this reportage are featured in Quartz’s new book The Objects that Power the Global Economy. You may not have seen these objects before, but they’ve already changed the way you live. Each chapter examines an object that is driving radical change in the global economy. This is from the chapter on the drug modafinil, which explores modifying the mind for a more productive life. 
*Disclaimer: No statements on this website have been reviewed by the Food and Drug Administration. No products mentioned on this website are intended to diagnose, treat, cure or prevent any diseases. brs.brainreference.com is sponsored by BRS Publishers. All editorials on this site were written by editors compensated by BRS Publishers and do not claim or state to be medical professionals giving medical advice. This website is only for the purpose of providing information. Please consult with your doctor before starting any mental health program or dietary supplement. All product pictures were photographed by us and used in conjunction with stock photos who are representing lab technicians and not doctors. If you feel any of this information is inaccurate contact us and we will verify and implement your correction within about 48 business hours. Also note that we have multiple affiliates and we are paid commission on various products by different companies. If you wish to advertise with us, please contact us. Any and all trademarks, logos and service marks displayed on this site are registered or unregistered Trademarks of their respective owners.
We included studies of the effects of these drugs on cognitive processes including learning, memory, and a variety of executive functions, including working memory and cognitive control. These studies are listed in Table 2, along with each study’s sample size, gender, age and tasks administered. Given our focus on cognition enhancement, we excluded studies whose measures were confined to perceptual or motor abilities. Studies of attention are included when the term attention refers to an executive function but not when it refers to the kind of perceptual process taxed by, for example, visual search or dichotic listening or when it refers to a simple vigilance task. Vigilance may affect cognitive performance, especially under conditions of fatigue or boredom, but a more vigilant person is not generally thought of as a smarter person, and therefore, vigilance is outside of the focus of the present review. The search and selection process is summarized in Figure 2.

Research on animals has shown that intermittent fasting — limiting caloric intake at least two days a week — can help improve neural connections in the hippocampus and protect against the accumulation of plaque, a protein prevalent in the brains of people with Alzheimer’s disease. Research has also shown that intermittent fasting helped reduce anxiety in mice.
An expert in legal and ethical issues surrounding health care technology, Associate Professor Eric Swirsky suggested that both groups have valid arguments, but that neither group is asking the right questions. Prof Swirsky is the clinical associate professor of biomedical and health information sciences in the UIC College of Applied Health Sciences.
(People aged <=18 shouldn’t be using any of this except harmless stuff - where one may have nutritional deficits - like fish oil & vitamin D; melatonin may be especially useful, thanks to the effects of screwed-up school schedules & electronics use on teenagers’ sleep. Changes in effects with age are real - amphetamines’ stimulant effects and modafinil’s histamine-like side-effects come to mind as examples.)
Despite decades of study, a full picture has yet to emerge of the cognitive effects of the classic psychostimulants and modafinil. Part of the problem is that getting rats, or indeed students, to do puzzles in laboratories may not be a reliable guide to the drugs’ effects in the wider world. Drugs have complicated effects on individuals living complicated lives. Determining that methylphenidate enhances cognition in rats by acting on their prefrontal cortex doesn’t tell you the potential impact that its effects on mood or motivation may have on human cognition.
The easiest way to use 2mg was to use half a gum; I tried not chewing it but just holding it in my cheek. The first night I tried, this seemed to work well for motivation; I knocked off a few long-standing to-do items. Subsequently, I began using it for writing, where it has been similarly useful. One difficult night, I wound up using the other half (for a total of 4mg over ~5 hours), and it worked but gave me a fairly mild headache and a faint sensation of nausea; these may have been due to forgetting to eat dinner, but this still indicates 3mg should probably be my personal ceiling until and unless tolerance to lower doses sets in.

However, history has shown that genies don’t stay in bottles. All ethics aside, there is ample proof that use of smart drugs can profoundly improve human cognition, and where there is an advantage to be gained – even where risks are involved – some people will leap at the chance to capitalize. At Smart Drug Smarts, we anticipate the social tide will continue to turn in favor of elective neural enhancers, and that the beneficial effects to users who choose to make the most of their brains will inevitably outweigh the costs.
Similar to the way in which some athletes used anabolic steroids (muscle-building hormones) to artificially enhance their physique, some students turned to smart drugs, particularly Ritalin and Adderall, to heighten their intellectual abilities. A 2005 study reported that, at some universities in the United States, as many as 7 percent of respondents had used smart drugs at least once in their lifetime and 2.1 percent had used smart drugs in the past month. Modafinil was used increasingly by persons who sought to recover quickly from jet lag and who were under heavy work demands. Military personnel were given the same drug when sent on missions with extended flight times.

In contrast to the types of memory discussed in the previous section, which are long-lasting and formed as a result of learning, working memory is a temporary store of information. Working memory has been studied extensively by cognitive psychologists and cognitive neuroscientists because of its role in executive function. It has been likened to an internal scratch pad; by holding information in working memory, one keeps it available to consult and manipulate in the service of performing tasks as diverse as parsing a sentence and planning a route through the environment. Presumably for this reason, working memory ability correlates with measures of general intelligence (Friedman et al., 2006). The possibility of enhancing working memory ability is therefore of potential real-world interest.


Cognition is a suite of mental phenomena that includes memory, attention and executive functions, and any drug would have to enhance executive functions to be considered truly ‘smart’. Executive functions occupy the higher levels of thought: reasoning, planning, directing attention to information that is relevant (and away from stimuli that aren’t), and thinking about what to do rather than acting on impulse or instinct. You activate executive functions when you tell yourself to count to 10 instead of saying something you may regret. They are what we use to make our actions moral and what we think of when we think about what makes us human.
Finally, it’s not clear that caffeine results in performance gains after long-term use; homeostasis/tolerance is a concern for all stimulants, but especially for caffeine. It is plausible that all caffeine consumption does for the long-term chronic user is restore performance to baseline. (Imagine someone waking up and drinking coffee, and their performance improves - well, so would the performance of a non-addict who is also slowly waking up!) See for example, James & Rogers 2005, Sigmon et al 2009, and Rogers et al 2010. A cross-section of thousands of participants in the Cambridge brain-training study found caffeine intake showed negligible effect sizes for mean and component scores (participants were not told to use caffeine, but the training was recreational & difficult, so one expects some difference).
Table 4 lists the results of 27 tasks from 23 articles on the effects of d-AMP or MPH on working memory. The oldest and most commonly used type of working memory task in this literature is the Sternberg short-term memory scanning paradigm (Sternberg, 1966), in which subjects hold a set of items (typically letters or numbers) in working memory and are then presented with probe items, to which they must respond “yes” (in the set) or “no” (not in the set). The size of the set, and hence the working memory demand, is sometimes varied, and the set itself may be varied from trial to trial to maximize working memory demands or may remain fixed over a block of trials. Taken together, the studies that have used a version of this task to test the effects of MPH and d-AMP on working memory have found mixed and somewhat ambiguous results. No pattern is apparent concerning the specific version of the task or the specific drug. Four studies found no effect (Callaway, 1983; Kennedy, Odenheimer, Baltzley, Dunlap, & Wood, 1990; Mintzer & Griffiths, 2007; Tipper et al., 2005), three found faster responses with the drugs (Fitzpatrick, Klorman, Brumaghim, & Keefover, 1988; Ward et al., 1997; D. E. Wilson et al., 1971), and one found higher accuracy in some testing sessions at some dosages, but no main effect of drug (Makris et al., 2007). The meaningfulness of the increased speed of responding is uncertain, given that it could reflect speeding of general response processes rather than working memory–related processes. Aspects of the results of two studies suggest that the effects are likely due to processes other than working memory: D. E. Wilson et al. (1971) reported comparable speeding in a simple task without working memory demands, and Tipper et al. (2005) reported comparable speeding across set sizes.
If this is the case, this suggests some thoughtfulness about my use of nicotine: there are times when use of nicotine will not be helpful, but times where it will be helpful. I don’t know what makes the difference, but I can guess it relates to over-stimulation: on some nights during the experiment, I had difficult concentrating on n-backing because it was boring and I was thinking about the other things I was interested in or working on - in retrospect, I wonder if those instances were nicotine nights.
All of the coefficients are positive, as one would hope, and one specific factor (MR7) squeaks in at d=0.34 (p=0.05). The graph is much less impressive than the graph for just MP, suggesting that the correlation may be spread out over a lot of factors, the current dataset isn’t doing a good job of capturing the effect compared to the MP self-rating, or it really was a placebo effect:
All of the coefficients are positive, as one would hope, and one specific factor (MR7) squeaks in at d=0.34 (p=0.05). The graph is much less impressive than the graph for just MP, suggesting that the correlation may be spread out over a lot of factors, the current dataset isn’t doing a good job of capturing the effect compared to the MP self-rating, or it really was a placebo effect:
Looking at the prices, the overwhelming expense is for modafinil. It’s a powerful stimulant - possibly the single most effective ingredient in the list - but dang expensive. Worse, there’s anecdotal evidence that one can develop tolerance to modafinil, so we might be wasting a great deal of money on it. (And for me, modafinil isn’t even very useful in the daytime: I can’t even notice it.) If we drop it, the cost drops by a full $800 from $1761 to $961 (almost halving) and to $0.96 per day. A remarkable difference, and if one were genetically insensitive to modafinil, one would definitely want to remove it.
For obvious reasons, it’s difficult for researchers to know just how common the “smart drug” or “neuro-enhancing” lifestyle is. However, a few recent studies suggest cognition hacking is appealing to a growing number of people. A survey conducted in 2016 found that 15% of University of Oxford students were popping pills to stay competitive, a rate that mirrored findings from other national surveys of UK university students. In the US, a 2014 study found that 18% of sophomores, juniors, and seniors at Ivy League colleges had knowingly used a stimulant at least once during their academic career, and among those who had ever used uppers, 24% said they had popped a little helper on eight or more occasions. Anecdotal evidence suggests that pharmacological enhancement is also on the rise within the workplace, where modafinil, which treats sleep disorders, has become particularly popular.
Can brain enhancing pills actually improve memory? This is a common question and the answer varies, depending on the product you are considering. The top 25 brain enhancement supplements appear to produce results for many users. Research and scientific studies have demonstrated the brain boosting effects of nootropic ingredients in the best quality supplements. At Smart Pill Guide, you can read nootropics reviews and discover how to improve memory for better performance in school or at work.

A total of 14 studies surveyed reasons for using prescription stimulants nonmedically, all but one study confined to student respondents. The most common reasons were related to cognitive enhancement. Different studies worded the multiple-choice alternatives differently, but all of the following appeared among the top reasons for using the drugs: “concentration” or “attention” (Boyd et al., 2006; DeSantis et al., 2008, 2009; Rabiner et al., 2009; Teter et al., 2003, 2006; Teter, McCabe, Cranford, Boyd, & Guthrie, 2005; White et al., 2006); “help memorize,” “study,” “study habits,” or “academic assignments” (Arria et al., 2008; Barrett et al., 2005; Boyd et al., 2006; DeSantis et al., 2008, 2009; DuPont et al., 2008; Low & Gendaszek, 2002; Rabiner et al., 2009; Teter et al., 2005, 2006; White et al., 2006); “grades” or “intellectual performance” (Low & Gendaszek, 2002; White et al., 2006); “before tests” or “finals week” (Hall et al., 2005); “alertness” (Boyd et al., 2006; Hall et al., 2005; Teter et al., 2003, 2005, 2006); or “performance” (Novak et al., 2007). However, every survey found other motives mentioned as well. The pills were also taken to “stay awake,” “get high,” “be able to drink and party longer without feeling drunk,” “lose weight,” “experiment,” and for “recreational purposes.”


Most epidemiological research on nonmedical stimulant use has been focused on issues relevant to traditional problems of drug abuse and addiction, and so, stimulant use for cognitive enhancement is not generally distinguished from use for other purposes, such as staying awake or getting high. As Boyd and McCabe (2008) pointed out, the large national surveys of nonmedical prescription drug use have so far failed to distinguish the ways and reasons that people use the drugs, and this is certainly true where prescription stimulants are concerned. The largest survey to investigate prescription stimulant use in a nationally representative sample of Americans, the National Survey on Drug Use and Health (NSDUH), phrases the question about nonmedical use as follows: “Have you ever, even once, used any of these stimulants when they were not prescribed for you or that you took only for the experience or feeling they caused?” (Snodgrass & LeBaron 2007). This phrasing does not strictly exclude use for cognitive enhancement, but it emphasizes the noncognitive effects of the drugs. In 2008, the NSDUH found a prevalence of 8.5% for lifetime nonmedical stimulant use by Americans over the age of 12 years and a prevalence of 12.3% for Americans between 21 and 25 (Substance Abuse and Mental Health Services Administration, 2009).
The goal of this article has been to synthesize what is known about the use of prescription stimulants for cognitive enhancement and what is known about the cognitive effects of these drugs. We have eschewed discussion of ethical issues in favor of simply trying to get the facts straight. Although ethical issues cannot be decided on the basis of facts alone, neither can they be decided without relevant facts. Personal and societal values will dictate whether success through sheer effort is as good as success with pharmacologic help, whether the freedom to alter one’s own brain chemistry is more important than the right to compete on a level playing field at school and work, and how much risk of dependence is too much risk. Yet these positions cannot be translated into ethical decisions in the real world without considerable empirical knowledge. Do the drugs actually improve cognition? Under what circumstances and for whom? Who will be using them and for what purposes? What are the mental and physical health risks for frequent cognitive-enhancement users? For occasional users?
By the end of 2009, at least 25 studies reported surveys of college students’ rates of nonmedical stimulant use. Of the studies using relatively smaller samples, prevalence was, in chronological order, 16.6% (lifetime; Babcock & Byrne, 2000), 35.3% (past year; Low & Gendaszek, 2002), 13.7% (lifetime; Hall, Irwin, Bowman, Frankenberger, & Jewett, 2005), 9.2% (lifetime; Carroll, McLaughlin, & Blake, 2006), and 55% (lifetime, fraternity students only; DeSantis, Noar, & Web, 2009). Of the studies using samples of more than a thousand students, somewhat lower rates of nonmedical stimulant use were found, although the range extends into the same high rates as the small studies: 2.5% (past year, Ritalin only; Teter, McCabe, Boyd, & Guthrie, 2003), 5.4% (past year; McCabe & Boyd, 2005), 4.1% (past year; McCabe, Knight, Teter, & Wechsler, 2005), 11.2% (past year; Shillington, Reed, Lange, Clapp, & Henry, 2006), 5.9% (past year; Teter, McCabe, LaGrange, Cranford, & Boyd, 2006), 16.2% (lifetime; White, Becker-Blease, & Grace-Bishop, 2006), 1.7% (past month; Kaloyanides, McCabe, Cranford, & Teter, 2007), 10.8% (past year; Arria, O’Grady, Caldeira, Vincent, & Wish, 2008); 5.3% (MPH only, lifetime; Du-Pont, Coleman, Bucher, & Wilford, 2008); 34% (lifetime; DeSantis, Webb, & Noar, 2008), 8.9% (lifetime; Rabiner et al., 2009), and 7.5% (past month; Weyandt et al., 2009).
Yes, according to a new policy at Duke University, which says that the “unauthorized use of prescription medicine to enhance academic performance” should be treated as cheating.” And no, according to law professor Nita Farahany, herself based at Duke University, who has called the policy “ill-conceived,” arguing that “banning smart drugs disempowers students from making educated choices for themselves.”
CDP-Choline is also known as Citicoline or Cytidine Diphosphocholine. It has been enhanced to allow improved crossing of the blood-brain barrier. Your body converts it to Choline and Cytidine. The second then gets converted to Uridine (which crosses the blood-brain barrier). CDP-Choline is found in meats (liver), eggs (yolk), fish, and vegetables (broccoli, Brussels sprout).
The majority of nonmedical users reported obtaining prescription stimulants from a peer with a prescription (Barrett et al., 2005; Carroll et al., 2006; DeSantis et al., 2008, 2009; DuPont et al., 2008; McCabe & Boyd, 2005; Novak et al., 2007; Rabiner et al., 2009; White et al., 2006). Consistent with nonmedical user reports, McCabe, Teter, and Boyd (2006) found 54% of prescribed college students had been approached to divert (sell, exchange, or give) their medication. Studies of secondary school students supported a similar conclusion (McCabe et al., 2004; Poulin, 2001, 2007). In Poulin’s (2007) sample, 26% of students with prescribed stimulants reported giving or selling some of their medication to other students in the past month. She also found that the number of students in a class with medically prescribed stimulants was predictive of the prevalence of nonmedical stimulant use in the class (Poulin, 2001). In McCabe et al.’s (2004) middle and high school sample, 23% of students with prescriptions reported being asked to sell or trade or give away their pills over their lifetime.
My first time was relatively short: 10 minutes around the F3/F4 points, with another 5 minutes to the forehead. Awkward holding it up against one’s head, and I see why people talk of LED helmets, it’s boring waiting. No initial impressions except maybe feeling a bit mentally cloudy, but that goes away within 20 minutes of finishing when I took a nap outside in the sunlight. Lostfalco says Expectations: You will be tired after the first time for 2 to 24 hours. It’s perfectly normal., but I’m not sure - my dog woke me up very early and disturbed my sleep, so maybe that’s why I felt suddenly tired. On the second day, I escalated to 30 minutes on the forehead, and tried an hour on my finger joints. No particular observations except less tiredness than before and perhaps less joint ache. Third day: skipped forehead stimulation, exclusively knee & ankle. Fourth day: forehead at various spots for 30 minutes; tiredness 5/6/7/8th day (11/12/13/4): skipped. Ninth: forehead, 20 minutes. No noticeable effects.
At small effects like d=0.07, a nontrivial chance of negative effects, and an unknown level of placebo effects (this was non-blinded, which could account for any residual effects), this strongly implies that LLLT is not doing anything for me worth bothering with. I was pretty skeptical of LLLT in the first place, and if 167 days can’t turn up anything noticeable, I don’t think I’ll be continuing with LLLT usage and will be giving away my LED set. (Should any experimental studies of LLLT for cognitive enhancement in healthy people surface with large quantitative effects - as opposed to a handful of qualitative case studies about brain-damaged people - and I decide to give LLLT another try, I can always just buy another set of LEDs: it’s only ~$15, after all.)
Nor am I sure how important the results are - partway through, I haven’t noticed anything bad, at least, from taking Noopept. And any effect is going to be subtle: people seem to think that 10mg is too small for an ingested rather than sublingual dose and I should be taking twice as much, and Noopept’s claimed to be a chronic gradual sort of thing, with less of an acute effect. If the effect size is positive, regardless of statistical-significance, I’ll probably think about doing a bigger real self-experiment (more days blocked into weeks or months & 20mg dose)
It arrived as described, a little bottle around the volume of a soda can. I had handy a plastic syringe with milliliter units which I used to measure out the nicotine-water into my tea. I began with half a ml the first day, 1ml the second day, and 2ml the third day. (My Zeo sleep scores were 85/103/86 (▁▇▁), and the latter had a feline explanation; these values are within normal variation for me, so if nicotine affects my sleep, it does so to a lesser extent than Adderall.) Subjectively, it’s hard to describe. At half a ml, I didn’t really notice anything; at 1 and 2ml, I thought I began to notice it - sort of a cleaner caffeine. It’s nice so far. It’s not as strong as I expected. I looked into whether the boiling water might be breaking it down, but the answer seems to be no - boiling tobacco is a standard way to extract nicotine, actually, and nicotine’s own boiling point is much higher than water; nor do I notice a drastic difference when I take it in ordinary water. And according to various e-cigarette sources, the liquid should be good for at least a year.
My answer is that this is not a lot of research or very good research (not nearly as good as the research on nicotine, eg.), and assuming it’s true, I don’t value long-term memory that much because LTM is something that is easily assisted or replaced (personal archives, and spaced repetition). For me, my problems tend to be more about akrasia and energy and not getting things done, so even if a stimulant comes with a little cost to long-term memory, it’s still useful for me. I’m going continue to use the caffeine. It’s not so bad in conjunction with tea, is very cheap, and I’m already addicted, so why not? Caffeine is extremely cheap, addictive, has minimal effects on health (and may be beneficial, from the various epidemiological associations with tea/coffee/chocolate & longevity), and costs extra to remove from drinks popular regardless of their caffeine content (coffee and tea again). What would be the point of carefully investigating it? Suppose there was conclusive evidence on the topic, the value of this evidence to me would be roughly $0 or since ignorance is bliss, negative money - because unless the negative effects were drastic (which current studies rule out, although tea has other issues like fluoride or metal contents), I would not change anything about my life. Why? I enjoy my tea too much. My usual tea seller doesn’t even have decaffeinated oolong in general, much less various varieties I might want to drink, apparently because de-caffeinating is so expensive it’s not worthwhile. What am I supposed to do, give up my tea and caffeine just to save on the cost of caffeine? Buy de-caffeinating machines (which I couldn’t even find any prices for, googling)? This also holds true for people who drink coffee or caffeinated soda. (As opposed to a drug like modafinil which is expensive, and so the value of a definitive answer is substantial and would justify some more extensive calculating of cost-benefit.)

Several chemical influences can completely disconnect those circuits so they’re no longer able to excite each other. “That’s what happens when we’re tired, when we’re stressed.” Drugs like caffeine and nicotine enhance the neurotransmitter acetylcholine, which helps restore function to the circuits. Hence people drink tea and coffee, or smoke cigarettes, “to try and put [the] prefrontal cortex into a more optimal state”.

Most research on these nootropics suggest they have some benefits, sure, but as Barbara Sahakian and Sharon Morein-Zamir explain in the journal Nature, nobody knows their long-term effects. And we don’t know how extended use might change your brain chemistry in the long run. Researchers are getting closer to what makes these substances do what they do, but very little is certain right now. If you’re looking to live out your own Limitless fantasy, do your research first, and proceed with caution.
Finally, it’s not clear that caffeine results in performance gains after long-term use; homeostasis/tolerance is a concern for all stimulants, but especially for caffeine. It is plausible that all caffeine consumption does for the long-term chronic user is restore performance to baseline. (Imagine someone waking up and drinking coffee, and their performance improves - well, so would the performance of a non-addict who is also slowly waking up!) See for example, James & Rogers 2005, Sigmon et al 2009, and Rogers et al 2010. A cross-section of thousands of participants in the Cambridge brain-training study found caffeine intake showed negligible effect sizes for mean and component scores (participants were not told to use caffeine, but the training was recreational & difficult, so one expects some difference).
On the other hand, sometimes you’ll feel a great cognitive boost as soon as you take a pill. That can be a good thing or a bad thing. I find, for example, that modafinil makes you more of what you already are. That means if you are already kind of a dick and you take modafinil, you might act like a really big dick and regret it. It certainly happened to me! I like to think that I’ve done enough hacking of my brain that I’ve gotten over that programming… and that when I use nootropics they help me help people.
×