In my last post, I talked about the idea that there is a resource that is necessary for self-control…I want to talk a little bit about the candidate for this resource, glucose. Could willpower fail because the brain is low on sugar? Let’s look at the numbers. A well-known statistic is that the brain, while only 2% of body weight, consumes 20% of the body’s energy. That sounds like the brain consumes a lot of calories, but if we assume a 2,400 calorie/day diet - only to make the division really easy - that’s 100 calories per hour on average, 20 of which, then, are being used by the brain. Every three minutes, then, the brain - which includes memory systems, the visual system, working memory, then emotion systems, and so on - consumes one (1) calorie. One. Yes, the brain is a greedy organ, but it’s important to keep its greediness in perspective… Suppose, for instance, that a brain in a person exerting their willpower - resisting eating brownies or what have you - used twice as many calories as a person not exerting willpower. That person would need an extra one third of a calorie per minute to make up the difference compared to someone not exerting willpower. Does exerting self control burn more calories?

Smart drugs act within the brain speeding up chemical transfers, acting as neurotransmitters, or otherwise altering the exchange of brain chemicals. There are typically very few side effects, and they are considered generally safe when used as indicated. Special care should be used by those who have underlying health conditions, are on other medications, pregnant women, and children, as there is no long-term data on the use and effects of nootropics in these groups.
The question of how much nonmedical use of stimulants occurs on college campuses is only partly answered by the proportion of students using the drugs in this way. The other part of the answer is how frequently they are used by those students. Three studies addressed this issue. Low and Gendaszek (2002) found a high past-year rate of 35.3%, but only 10% and 8% of this population used monthly and weekly, respectively. White et al. (2006) found a larger percentage used frequently: 15.5% using two to three times per week and 33.9% using two to three times per month. Teter et al. (2006) found that most nonmedical users take prescription stimulants sporadically, with well over half using five or fewer times and nearly 40% using only once or twice in their lives. DeSantis et al. (2008) offered qualitative evidence on the issue, reporting that students often turned to stimulants at exam time only, particularly when under pressure to study for multiple exams at the same time. Thus, there appears to be wide variation in the regularity of stimulant use, with the most common pattern appearing to be infrequent use.
“The author’s story alone is a remarkable account of not just survival, but transcendence of a near-death experience. Cavin went on to become an advocate for survival and survivors of traumatic brain injuries, discovering along the way the key role played by nutrition. But this book is not just for injury survivors. It is for anyone who wants to live (and eat) well.”
A randomized non-blind self-experiment of LLLT 2014-2015 yields a causal effect which is several times smaller than a correlative analysis and non-statistically-significant/very weak Bayesian evidence for a positive effect. This suggests that the earlier result had been driven primarily by reverse causation, and that my LLLT usage has little or no benefits.
With this experiment, I broke from the previous methodology, taking the remaining and final half Nuvigil at midnight. I am behind on work and could use a full night to catch up. By 8 AM, I am as usual impressed by the Nuvigil - with Modalert or something, I generally start to feel down by mid-morning, but with Nuvigil, I feel pretty much as I did at 1 AM. Sleep: 9:51/9:15/8:27
The question of how much nonmedical use of stimulants occurs on college campuses is only partly answered by the proportion of students using the drugs in this way. The other part of the answer is how frequently they are used by those students. Three studies addressed this issue. Low and Gendaszek (2002) found a high past-year rate of 35.3%, but only 10% and 8% of this population used monthly and weekly, respectively. White et al. (2006) found a larger percentage used frequently: 15.5% using two to three times per week and 33.9% using two to three times per month. Teter et al. (2006) found that most nonmedical users take prescription stimulants sporadically, with well over half using five or fewer times and nearly 40% using only once or twice in their lives. DeSantis et al. (2008) offered qualitative evidence on the issue, reporting that students often turned to stimulants at exam time only, particularly when under pressure to study for multiple exams at the same time. Thus, there appears to be wide variation in the regularity of stimulant use, with the most common pattern appearing to be infrequent use.
Some nootropics are more commonly used than others. These include nutrients like Alpha GPC, huperzine A, L-Theanine, bacopa monnieri, and vinpocetine. Other types of nootropics ware still gaining traction. With all that in mind, to claim there is a “best” nootropic for everyone would be the wrong approach since every person is unique and looking for different benefits.
For 2 weeks, upon awakening I took close-up photographs of my right eye. Then I ordered two jars of Life-Extension Sea-Iodine (60x1mg) (1mg being an apparently safe dose), and when it arrived on 10 September 2012, I stopped the photography and began taking 1 iodine pill every other day. I noticed no ill effects (or benefits) after a few weeks and upped the dose to 1 pill daily. After the first jar of 60 pills was used up, I switched to the second jar, and began photography as before for 2 weeks. The photographs were uploaded, cropped by hand in Gimp, and shrunk to more reasonable dimensions; both sets are available in a Zip file.
How much of the nonmedical use of prescription stimulants documented by these studies was for cognitive enhancement? Prescription stimulants could be used for purposes other than cognitive enhancement, including for feelings of euphoria or energy, to stay awake, or to curb appetite. Were they being used by students as smart pills or as “fun pills,” “awake pills,” or “diet pills”? Of course, some of these categories are not entirely distinct. For example, by increasing the wakefulness of a sleep-deprived person or by lifting the mood or boosting the motivation of an apathetic person, stimulants are likely to have the secondary effect of improving cognitive performance. Whether and when such effects should be classified as cognitive enhancement is a question to which different answers are possible, and none of the studies reviewed here presupposed an answer. Instead, they show how the respondents themselves classified their reasons for nonmedical stimulant use.
One thing to notice is that the default case matters a lot. This asymmetry is because you switch decisions in different possible worlds - when you would take Adderall but stop you’re in the world where Adderall doesn’t work, and when you wouldn’t take Adderall but do you’re in the world where Adderall does work (in the perfect information case, at least). One of the ways you can visualize this is that you don’t penalize tests for giving you true negative information, and you reward them for giving you true positive information. (This might be worth a post by itself, and is very Litany of Gendlin.)
The truth is that, almost 20 years ago when my brain was failing and I was fat and tired, I did not know to follow this advice. I bought $1000 worth of smart drugs from Europe, took them all at once out of desperation, and got enough cognitive function to save my career and tackle my metabolic problems. With the information we have now, you don’t need to do that. Please learn from my mistakes!
Next, if these theorized safe and effective pills don't just get you through a test or the day's daily brain task but also make you smarter, whatever smarter means, then what? Where's the boundary between genius and madness? If Einstein had taken such drugs, would he have created a better theory of gravity? Or would he have become delusional, chasing quantum ghosts with no practical application, or worse yet, string theory. (Please use "string theory" in your subject line for easy sorting of hate mail.)
10:30 AM; no major effect that I notice throughout the day - it’s neither good nor bad. This smells like placebo (and part of my mind is going how unlikely is it to get placebo 3 times in a row!, which is just the Gambler’s fallacy talking inasmuch as this is sampling with replacement). I give it 60% placebo; I check the next day right before taking, and it is. Man!
Schroeder, Mann-Koepke, Gualtieri, Eckerman, and Breese (1987) assessed the performance of subjects on placebo and MPH in a game that allowed subjects to switch between two different sectors seeking targets to shoot. They did not observe an effect of the drug on overall level of performance, but they did find fewer switches between sectors among subjects who took MPH, and perhaps because of this, these subjects did not develop a preference for the more fruitful sector.
Kratom (Erowid, Reddit) is a tree leaf from Southeast Asia; it’s addictive to some degree (like caffeine and nicotine), and so it is regulated/banned in Thailand, Malaysia, Myanmar, and Bhutan among others - but not the USA. (One might think that kratom’s common use there indicates how very addictive it must be, except it literally grows on trees so it can’t be too hard to get.) Kratom is not particularly well-studied (and what has been studied is not necessarily relevant - I’m not addicted to any opiates!), and it suffers the usual herbal problem of being an endlessly variable food product and not a specific chemical with the fun risks of perhaps being poisonous, but in my reading it doesn’t seem to be particularly dangerous or have serious side-effects.

Hericium erinaceus (Examine.com) was recommended strongly by several on the ImmInst.org forums for its long-term benefits to learning, apparently linked to Nerve growth factor. Highly speculative stuff, and it’s unclear whether the mushroom powder I bought was the right form to take (ImmInst.org discussions seem to universally assume one is taking an alcohol or hotwater extract). It tasted nice, though, and I mixed it into my sleeping pills (which contain melatonin & tryptophan). I’ll probably never know whether the $30 for 0.5lb was well-spent or not.
Nature magazine conducted a poll asking its readers about their cognitive-enhancement practices and their attitudes toward cognitive enhancement. Hundreds of college faculty and other professionals responded, and approximately one fifth reported using drugs for cognitive enhancement, with Ritalin being the most frequently named (Maher, 2008). However, the nature of the sample—readers choosing to answer a poll on cognitive enhancement—is not representative of the academic or general population, making the results of the poll difficult to interpret. By analogy, a poll on Vermont vacations, asking whether people vacation in Vermont, what they think about Vermont, and what they do if and when they visit, would undoubtedly not yield an accurate estimate of the fraction of the population that takes its vacations in Vermont.
Hall, Irwin, Bowman, Frankenberger, & Jewett (2005) Large public university undergraduates (N = 379) 13.7% (lifetime) 27%: use during finals week; 12%: use when party; 15.4%: use before tests; 14%: believe stimulants have a positive effect on academic achievement in the long run M = 2.06 (SD = 1.19) purchased stimulants from other students; M = 2.81 (SD = 1.40) have been given stimulants by other studentsb
This world is a competitive place. If you’re not seeking an advantage, you’ll get passed by those who do. Whether you’re studying for a final exam or trying to secure a big business deal, you need a definitive mental edge. Are smart drugs and brain-boosting pills the answer for cognitive enhancement in 2019? If you’re not cheating, you’re not trying, right? Bad advice for some scenarios, but there is a grain of truth to every saying—even this one.
It is at the top of the supplement snake oil list thanks to tons of correlations; for a review, see Luchtman & Song 2013 but some specifics include Teenage Boys Who Eat Fish At Least Once A Week Achieve Higher Intelligence Scores, anti-inflammatory properties (see Fish Oil: What the Prescriber Needs to Know on arthritis), and others - Fish oil can head off first psychotic episodes (study; Seth Roberts commentary), Fish Oil May Fight Breast Cancer, Fatty Fish May Cut Prostate Cancer Risk & Walnuts slow prostate cancer, Benefits of omega-3 fatty acids tally up, Serum Phospholipid Docosahexaenonic Acid Is Associated with Cognitive Functioning during Middle Adulthood endless anecdotes.

This world is a competitive place. If you’re not seeking an advantage, you’ll get passed by those who do. Whether you’re studying for a final exam or trying to secure a big business deal, you need a definitive mental edge. Are smart drugs and brain-boosting pills the answer for cognitive enhancement in 2019? If you’re not cheating, you’re not trying, right? Bad advice for some scenarios, but there is a grain of truth to every saying—even this one.
Given the size of the literature just reviewed, it is surprising that so many basic questions remain open. Although d-AMP and MPH appear to enhance retention of recently learned information and, in at least some individuals, also enhance working memory and cognitive control, there remains great uncertainty regarding the size and robustness of these effects and their dependence on dosage, individual differences, and specifics of the task.
Companies already know a great deal about how their employees live their lives. With the help of wearable technologies and health screenings, companies can now analyze the relation between bodily activities — exercise, sleep, nutrition, etc. — and work performance. With the justification that healthy employees perform better, some companies have made exercise mandatory by using sanctions against those who refuse to perform. And according to The Kaiser Family Foundation, of the large U.S. companies that offer health screenings, nearly half of them use financial incentives to persuade employees to participate.

For the sake of organizing the review, we have divided the literature according to the general type of cognitive process being studied, with sections devoted to learning and to various kinds of executive function. Executive function is a broad and, some might say, vague concept that encompasses the processes by which individual perceptual, motoric, and mnemonic abilities are coordinated to enable appropriate, flexible task performance, especially in the face of distracting stimuli or alternative competing responses. Two major aspects of executive function are working memory and cognitive control, responsible for the maintenance of information in a short-term active state for guiding task performance and responsible for inhibition of irrelevant information or responses, respectively. A large enough literature exists on the effects of stimulants on these two executive abilities that separate sections are devoted to each. In addition, a final section includes studies of miscellaneous executive abilities including planning, fluency, and reasoning that have also been the subjects of published studies.
1 PM; overall this was a pretty productive day, but I can’t say it was very productive. I would almost say even odds, but for some reason I feel a little more inclined towards modafinil. Say 55%. That night’s sleep was vile: the Zeo says it took me 40 minutes to fall asleep, I only slept 7:37 total, and I woke up 7 times. I’m comfortable taking this as evidence of modafinil (half-life 10 hours, 1 PM to midnight is only 1 full halving), bumping my prediction to 75%. I check, and sure enough - modafinil.
Analgesics Anesthetics General Local Anorectics Anti-ADHD agents Antiaddictives Anticonvulsants Antidementia agents Antidepressants Antimigraine agents Antiparkinson agents Antipsychotics Anxiolytics Depressants Entactogens Entheogens Euphoriants Hallucinogens Psychedelics Dissociatives Deliriants Hypnotics/Sedatives Mood Stabilizers Neuroprotectives Nootropics Neurotoxins Orexigenics Serenics Stimulants Wakefulness-promoting agents
×