In a broad sense, this is enhancement; in a stricter one, it’s optimisation. “I think people think about smart drugs the way they think about steroids in athletics,” Arnsten says, “but it’s not a proper analogy, because with steroids you’re creating more muscle. With smart drugs, all you’re doing is taking the brain that you have and putting it in its optimal chemical state. You’re not taking Homer Simpson and making him into Einstein.”
For illustration, consider amphetamines, Ritalin, and modafinil, all of which have been proposed as cognitive enhancers of attention. These drugs exhibit some positive effects on cognition, especially among individuals with lower baseline abilities. However, individuals of normal or above-average cognitive ability often show negligible improvements or even decrements in performance following drug treatment (for details, see de Jongh, Bolt, Schermer, & Olivier, 2008). For instance, Randall, Shneerson, and File (2005) found that modafinil improved performance only among individuals with lower IQ, not among those with higher IQ. [See also Finke et al 2010 on visual attention.] Farah, Haimm, Sankoorikal, & Chatterjee 2009 found a similar nonlinear relationship of dose to response for amphetamines in a remote-associates task, with low-performing individuals showing enhanced performance but high-performing individuals showing reduced performance. Such ∩-shaped dose-response curves are quite common (see Cools & Robbins, 2004)
Not that everyone likes to talk about using the drugs. People don’t necessarily want to reveal how they get their edge and there is stigma around people trying to become smarter than their biology dictates, says Lawler. Another factor is undoubtedly the risks associated with ingesting substances bought on the internet and the confusing legal statuses of some. Phenylpiracetam, for example, is a prescription drug in Russia. It isn’t illegal to buy in the US, but the man-made chemical exists in a no man’s land where it is neither approved nor outlawed for human consumption, notes Lawler.
Second, users are concerned with the possibility of withdrawal if they stop taking the nootropics. They worry that if they stop taking nootropics they won’t be as smart as when they were taking nootropics, and will need to continue taking them to function. Some users report feeling a slight brain fog when discontinuing nootropics, but that isn’t a sign of regression.
Either prescription or illegal, daily use of testosterone would not be cheap. On the other hand, if I am one of the people for whom testosterone works very well, it would be even more valuable than modafinil, in which case it is well worth even arduous experimenting. Since I am on the fence on whether it would help, this suggests the value of information is high.
Another ingredient used in this formula is GABA or Gamma-Aminobutyric acid; it’s the second most common neurotransmitter found in the human brain. Being an inhibitory neurotransmitter it helps calm and reduce neuronal activity; this calming effect makes GABA an excellent ingredient in anti-anxiety medication. Lecithin is another ingredient found in Smart Pill and is a basic compound found in every cell of the body, with cardiovascular benefits it can also help restore the liver. Another effect is that it works with neurological functions such as memory or attention, thus improving brain Effectiveness.
The absence of a suitable home for this needed research on the current research funding landscape exemplifies a more general problem emerging now, as applications of neuroscience begin to reach out of the clinical setting and into classrooms, offices, courtrooms, nurseries, marketplaces, and battlefields (Farah, 2011). Most of the longstanding sources of public support for neuroscience research are dedicated to basic research or medical applications. As neuroscience is increasingly applied to solving problems outside the medical realm, it loses access to public funding. The result is products and systems reaching the public with less than adequate information about effectiveness and/or safety. Examples include cognitive enhancement with prescription stimulants, event-related potential and fMRI-based lie detection, neuroscience-based educational software, and anti-brain-aging computer programs. Research and development in nonmedical neuroscience are now primarily the responsibility of private corporations, which have an interest in promoting their products. Greater public support of nonmedical neuroscience research, including methods of cognitive enhancement, will encourage greater knowledge and transparency concerning the efficacy and safety of these products and will encourage the development of products based on social value rather than profit value.
Racetams are often used as a smart drug by finance workers, students, and individuals in high-pressure jobs as a way to help them get into a mental flow state and work for long periods of time. Additionally, the habits and skills that an individual acquires while using a racetam can still be accessed when someone is not taking racetams because it becomes a habit.
Amphetamine – systematic reviews and meta-analyses report that low-dose amphetamine improved cognitive functions (e.g., inhibitory control, episodic memory, working memory, and aspects of attention) in healthy people and in individuals with ADHD.[21][22][23][25] A 2014 systematic review noted that low doses of amphetamine also improved memory consolidation, in turn leading to improved recall of information in non-ADHD youth.[23] It also improves task saliency (motivation to perform a task) and performance on tedious tasks that required a high degree of effort.[22][24][25]
×