But there would also be significant downsides. Amphetamines are structurally similar to crystal meth – a potent, highly addictive recreational drug which has ruined countless lives and can be fatal. Both Adderall and Ritalin are known to be addictive, and there are already numerous reports of workers who struggled to give them up. There are also side effects, such as nervousness, anxiety, insomnia, stomach pains, and even hair loss, among others.
Many laboratory tasks have been developed to study working memory, each of which taxes to varying degrees aspects such as the overall capacity of working memory, its persistence over time, and its resistance to interference either from task-irrelevant stimuli or among the items to be retained in working memory (i.e., cross-talk). Tasks also vary in the types of information to be retained in working memory, for example, verbal or spatial information. The question of which of these task differences correspond to differences between distinct working memory systems and which correspond to different ways of using a single underlying system is a matter of debate (e.g., D’Esposito, Postle, & Rypma, 2000; Owen, 2000). For the present purpose, we ignore this question and simply ask, Do MPH and d-AMP affect performance in the wide array of tasks that have been taken to operationalize working memory? If the literature does not yield a unanimous answer to this question, then what factors might be critical in determining whether stimulant effects are manifest?
A number of different laboratory studies have assessed the acute effect of prescription stimulants on the cognition of normal adults. In the next four sections, we review this literature, with the goal of answering the following questions: First, do MPH (e.g., Ritalin) and d-AMP (by itself or as the main ingredient in Adderall) improve cognitive performance relative to placebo in normal healthy adults? Second, which cognitive systems are affected by these drugs? Third, how do the effects of the drugs depend on the individual using them?

The peculiar tired-sharp feeling was there as usual, and the DNB scores continue to suggest this is not an illusion, as they remain in the same 30-50% band as my normal performance. I did not notice the previous aboulia feeling; instead, around noon, I was filled with a nervous energy and a disturbingly rapid pulse which meditation & deep breathing did little to help with, and which didn’t go away for an hour or so. Fortunately, this was primarily at church, so while I felt irritable, I didn’t actually interact with anyone or snap at them, and was able to keep a lid on it. I have no idea what that was about. I wondered if it might’ve been a serotonin storm since amphetamines are some of the drugs that can trigger storms but the Adderall had been at 10:50 AM the previous day, or >25 hours (the half-lives of the ingredients being around 13 hours). An hour or two previously I had taken my usual caffeine-piracetam pill with my morning tea - could that have interacted with the armodafinil and the residual Adderall? Or was it caffeine+modafinil? Speculation, perhaps. A house-mate was ill for a few hours the previous day, so maybe the truth is as prosaic as me catching whatever he had.

Related to the famous -racetams but reportedly better (and much less bulky), Noopept is one of the many obscure Russian nootropics. (Further reading: Google Scholar, Examine.com, Reddit, Longecity, Bluelight.ru.) Its advantages seem to be that it’s far more compact than piracetam and doesn’t taste awful so it’s easier to store and consume; doesn’t have the cloud hanging over it that piracetam does due to the FDA letters, so it’s easy to purchase through normal channels; is cheap on a per-dose basis; and it has fans claiming it is better than piracetam.
Furthermore, there is no certain way to know whether you’ll have an adverse reaction to a particular substance, even if it’s natural. This risk is heightened when stacking multiple substances because substances can have synergistic effects, meaning one substance can heighten the effects of another. However, using nootropic stacks that are known to have been frequently used can reduce the chances of any negative side effects.
Minnesota-based Medtronic offers a U.S. Food and Drug Administration (FDA)-cleared smart pill called PillCam COLON, which provides clear visualization of the colon and is complementary to colonoscopy. It is an alternative for patients who refuse invasive colon exams, have bleeding or sedation risks or inflammatory bowel disease, or have had a previous incomplete colonoscopy. PillCam COLON allows  more  people  to  get  screened  for  colorectal  cancer with  a  minimally  invasive, radiation-free option. The research focus for WCEs is on effective localization, steering and control of capsules. Device development relies on leveraging applied science and technologies for better system performance, rather than completely reengineering the pill.
The smart pill industry has popularized many herbal nootropics. Most of them first appeared in Ayurveda and traditional Chinese medicine. Ayurveda is a branch of natural medicine originating from India. It focuses on using herbs as remedies for improving quality of life and healing ailments. Evidence suggests our ancestors were on to something with this natural approach.

Drugs and catastrophe are seemingly never far apart, whether in laboratories, real life or Limitless. Downsides are all but unavoidable: if a drug enhances one particular cognitive function, the price may be paid by other functions. To enhance one dimension of cognition, you’ll need to appropriate resources that would otherwise be available for others.

Another prescription stimulant medication, modafinil (known by the brand name Provigil), is usually prescribed to patients suffering from narcolepsy and shift-work sleep disorder, but it might turn out to have broader applications. “We have conducted at the University of Cambridge double-blind, placebo-controlled studies in healthy people using modafinil and have found improvements in cognition, including in working memory,” Sahakian says. However, she doesn’t think everyone should start using the drug off-label. “There are no long-term safety and efficacy studies of modafinil in healthy people, and so it is unclear what the risks might be.”
We’ve talk about how caffeine affects the body in great detail, but the basic idea is that it can improve your motivation and focus by increasing catecholamine signaling. Its effects can be dampened over time, however, as you start to build a caffeine tolerance. Research on L-theanine, a common amino acid, suggests it promotes neuronal health and can decrease the incidence of cold and flu symptoms by strengthening the immune system. And one study, published in the journal Biological Psychology, found that L-theanine reduces psychological and physiological stress responses—which is why it’s often taken with caffeine. In fact, in a 2014 systematic review of 11 different studies, published in the journal Nutrition Review, researchers found that use of caffeine in combination with L-theanine promoted alertness, task switching, and attention. The reviewers note the effects are most pronounced during the first two hours post-dose, and they also point out that caffeine is the major player here, since larger caffeine doses were found to have more of an effect than larger doses of L-theanine.
The question of how much nonmedical use of stimulants occurs on college campuses is only partly answered by the proportion of students using the drugs in this way. The other part of the answer is how frequently they are used by those students. Three studies addressed this issue. Low and Gendaszek (2002) found a high past-year rate of 35.3%, but only 10% and 8% of this population used monthly and weekly, respectively. White et al. (2006) found a larger percentage used frequently: 15.5% using two to three times per week and 33.9% using two to three times per month. Teter et al. (2006) found that most nonmedical users take prescription stimulants sporadically, with well over half using five or fewer times and nearly 40% using only once or twice in their lives. DeSantis et al. (2008) offered qualitative evidence on the issue, reporting that students often turned to stimulants at exam time only, particularly when under pressure to study for multiple exams at the same time. Thus, there appears to be wide variation in the regularity of stimulant use, with the most common pattern appearing to be infrequent use.
Several chemical influences can completely disconnect those circuits so they’re no longer able to excite each other. “That’s what happens when we’re tired, when we’re stressed.” Drugs like caffeine and nicotine enhance the neurotransmitter acetylcholine, which helps restore function to the circuits. Hence people drink tea and coffee, or smoke cigarettes, “to try and put [the] prefrontal cortex into a more optimal state”.
Enhanced learning was also observed in two studies that involved multiple repeated encoding opportunities. Camp-Bruno and Herting (1994) found MPH enhanced summed recall in the Buschke Selective Reminding Test (Buschke, 1973; Buschke & Fuld, 1974) when 1-hr and 2-hr delays were combined, although individually only the 2-hr delay approached significance. Likewise, de Wit, Enggasser, and Richards (2002) found no effect of d-AMP on the Hopkins Verbal Learning Test (Brandt, 1991) after a 25-min delay. Willett (1962) tested rote learning of nonsense syllables with repeated presentations, and his results indicate that d-AMP decreased the number of trials needed to reach criterion.
The greatly increased variance, but only somewhat increased mean, is consistent with nicotine operating on me with an inverted U-curve for dosage/performance (or the Yerkes-Dodson law): on good days, 1mg nicotine is too much and degrades performance (perhaps I am overstimulated and find it hard to focus on something as boring as n-back) while on bad days, nicotine is just right and improves n-back performance.
The experiment then is straightforward: cut up a fresh piece of gum, randomly select from it and an equivalent dry piece of gum, and do 5 rounds of dual n-back to test attention/energy & WM. (If it turns out to be placebo, I’ll immediately use the remaining active dose: no sense in wasting gum, and this will test whether nigh-daily use renders nicotine gum useless, similar to how caffeine may be useless if taken daily. If there’s 3 pieces of active gum left, then I wrap it very tightly in Saran wrap which is sticky and air-tight.) The dose will be 1mg or 1/4 a gum. I cut up a dozen pieces into 4 pieces for 48 doses and set them out to dry. Per the previous power analyses, 48 groups of DNB rounds likely will be enough for detecting small-medium effects (partly since we will be only looking at one metric - average % right per 5 rounds - with no need for multiple correction). Analysis will be one-tailed, since we’re looking for whether there is a clear performance improvement and hence a reason to keep using nicotine gum (rather than whether nicotine gum might be harmful).

Scientists found that the drug can disrupt the way memories are stored. This ability could be invaluable in treating trauma victims to prevent associated stress disorders. The research has also triggered suggestions that licensing these memory-blocking drugs may lead to healthy people using them to erase memories of awkward conversations, embarrassing blunders and any feelings for that devious ex-girlfriend.


Table 4 lists the results of 27 tasks from 23 articles on the effects of d-AMP or MPH on working memory. The oldest and most commonly used type of working memory task in this literature is the Sternberg short-term memory scanning paradigm (Sternberg, 1966), in which subjects hold a set of items (typically letters or numbers) in working memory and are then presented with probe items, to which they must respond “yes” (in the set) or “no” (not in the set). The size of the set, and hence the working memory demand, is sometimes varied, and the set itself may be varied from trial to trial to maximize working memory demands or may remain fixed over a block of trials. Taken together, the studies that have used a version of this task to test the effects of MPH and d-AMP on working memory have found mixed and somewhat ambiguous results. No pattern is apparent concerning the specific version of the task or the specific drug. Four studies found no effect (Callaway, 1983; Kennedy, Odenheimer, Baltzley, Dunlap, & Wood, 1990; Mintzer & Griffiths, 2007; Tipper et al., 2005), three found faster responses with the drugs (Fitzpatrick, Klorman, Brumaghim, & Keefover, 1988; Ward et al., 1997; D. E. Wilson et al., 1971), and one found higher accuracy in some testing sessions at some dosages, but no main effect of drug (Makris et al., 2007). The meaningfulness of the increased speed of responding is uncertain, given that it could reflect speeding of general response processes rather than working memory–related processes. Aspects of the results of two studies suggest that the effects are likely due to processes other than working memory: D. E. Wilson et al. (1971) reported comparable speeding in a simple task without working memory demands, and Tipper et al. (2005) reported comparable speeding across set sizes.
Attention-deficit/hyperactivity disorder (ADHD), a behavioral syndrome characterized by inattention and distractibility, restlessness, inability to sit still, and difficulty concentrating on one thing for any period of time. ADHD most commonly occurs in children, though an increasing number of adults are being diagnosed with the disorder. ADHD is three times more…
Flaxseed oil is, ounce for ounce, about as expensive as fish oil, and also must be refrigerated and goes bad within months anyway. Flax seeds on the other hand, do not go bad within months, and cost dollars per pound. Various resources I found online estimated that the ALA component of human-edible flaxseed to be around 20% So Amazon’s 6lbs for $14 is ~1.2lbs of ALA, compared to 16fl-oz of fish oil weighing ~1lb and costing ~$17, while also keeping better and being a calorically useful part of my diet. The flaxseeds can be ground in an ordinary food processor or coffee grinder. It’s not a hugely impressive cost-savings, but I think it’s worth trying when I run out of fish oil.

At this point, I began thinking about what I was doing. Black-market Adderall is fairly expensive; $4-10 a pill vs prescription prices which run more like $60 for 120 20mg pills. It would be a bad idea to become a fan without being quite sure that it is delivering bang for the buck. Now, why the piracetam mix as the placebo as opposed to my other available powder, creatine powder, which has much smaller mental effects? Because the question for me is not whether the Adderall works (I am quite sure that the amphetamines have effects!) but whether it works better for me than my cheap legal standbys (piracetam & caffeine)? (Does Adderall have marginal advantage for me?) Hence, I want to know whether Adderall is better than my piracetam mix. People frequently underestimate the power of placebo effects, so it’s worth testing. (Unfortunately, it seems that there is experimental evidence that people on Adderall know they are on Adderall and also believe they have improved performance, when they do not5. So the blind testing does not buy me as much as it could.)
In my last post, I talked about the idea that there is a resource that is necessary for self-control…I want to talk a little bit about the candidate for this resource, glucose. Could willpower fail because the brain is low on sugar? Let’s look at the numbers. A well-known statistic is that the brain, while only 2% of body weight, consumes 20% of the body’s energy. That sounds like the brain consumes a lot of calories, but if we assume a 2,400 calorie/day diet - only to make the division really easy - that’s 100 calories per hour on average, 20 of which, then, are being used by the brain. Every three minutes, then, the brain - which includes memory systems, the visual system, working memory, then emotion systems, and so on - consumes one (1) calorie. One. Yes, the brain is a greedy organ, but it’s important to keep its greediness in perspective… Suppose, for instance, that a brain in a person exerting their willpower - resisting eating brownies or what have you - used twice as many calories as a person not exerting willpower. That person would need an extra one third of a calorie per minute to make up the difference compared to someone not exerting willpower. Does exerting self control burn more calories?
As I am not any of the latter, I didn’t really expect a mental benefit. As it happens, I observed nothing. What surprised me was something I had forgotten about: its physical benefits. My performance in Taekwondo classes suddenly improved - specifically, my endurance increased substantially. Before, classes had left me nearly prostrate at the end, but after, I was weary yet fairly alert and happy. (I have done Taekwondo since I was 7, and I have a pretty good sense of what is and is not normal performance for my body. This was not anything as simple as failing to notice increasing fitness or something.) This was driven home to me one day when in a flurry before class, I prepared my customary tea with piracetam, choline & creatine; by the middle of the class, I was feeling faint & tired, had to take a break, and suddenly, thunderstruck, realized that I had absentmindedly forgot to actually drink it! This made me a believer.

This doesn’t fit the U-curve so well: while 60mg is substantially negative as one would extrapolate from 30mg being ~0, 48mg is actually better than 15mg. But we bought the estimates of 48mg/60mg at a steep price - we ignore the influence of magnesium which we know influences the data a great deal. And the higher doses were added towards the end, so may be influenced by the magnesium starting/stopping. Another fix for the missingness is to impute the missing data. In this case, we might argue that the placebo days of the magnesium experiment were identical to taking no magnesium at all and so we can classify each NA as a placebo day, and rerun the desired analysis:


The use of cognition-enhancing drugs by healthy individuals in the absence of a medical indication spans numerous controversial issues, including the ethics and fairness of their use, concerns over adverse effects, and the diversion of prescription drugs for nonmedical uses, among others.[1][2] Nonetheless, the international sales of cognition-enhancing supplements exceeded US$1 billion in 2015 when global demand for these compounds grew.[3]
×