I stayed up late writing some poems and about how [email protected] kills, and decided to make a night of it. I took the armodafinil at 1 AM; the interesting bit is that this was the morning/evening after what turned out to be an Adderall (as opposed to placebo) trial, so perhaps I will see how well or ill they go together. A set of normal scores from a previous day was 32%/43%/51%/48%. At 11 PM, I scored 39% on DNB; at 1 AM, I scored 50%/43%; 5:15 AM, 39%/37%; 4:10 PM, 42%/40%; 11 PM, 55%/21%/38%. (▂▄▆▅ vs ▃▅▄▃▃▄▃▇▁▃)
(If I am not deficient, then supplementation ought to have no effect.) The previous material on modern trends suggests a prior >25%, and higher than that if I were female. However, I was raised on a low-salt diet because my father has high blood pressure, and while I like seafood, I doubt I eat it more often than weekly. I suspect I am somewhat iodine-deficient, although I don’t believe as confidently as I did that I had a vitamin D deficiency. Let’s call this one 75%.
If smart drugs are the synthetic cognitive enhancers, sleep, nutrition and exercise are the "natural" ones. But the appeal of drugs like Ritalin and modafinil lies in their purported ability to enhance brain function beyond the norm. Indeed, at school or in the workplace, a pill that enhanced the ability to acquire and retain information would be particularly useful when it came to revising and learning lecture material. But despite their increasing popularity, do prescription stimulants actually enhance cognition in healthy users?

The goal of this article has been to synthesize what is known about the use of prescription stimulants for cognitive enhancement and what is known about the cognitive effects of these drugs. We have eschewed discussion of ethical issues in favor of simply trying to get the facts straight. Although ethical issues cannot be decided on the basis of facts alone, neither can they be decided without relevant facts. Personal and societal values will dictate whether success through sheer effort is as good as success with pharmacologic help, whether the freedom to alter one’s own brain chemistry is more important than the right to compete on a level playing field at school and work, and how much risk of dependence is too much risk. Yet these positions cannot be translated into ethical decisions in the real world without considerable empirical knowledge. Do the drugs actually improve cognition? Under what circumstances and for whom? Who will be using them and for what purposes? What are the mental and physical health risks for frequent cognitive-enhancement users? For occasional users?
A fundamental aspect of human evolution has been the drive to augment our capabilities. The neocortex is the neural seat of abstract and higher order cognitive processes. As it grew, so did our ability to create. The invention of tools and weapons, writing, the steam engine, and the computer have exponentially increased our capacity to influence and understand the world around us. These advances are being driven by improved higher-order cognitive processing.1Fascinatingly, the practice of modulating our biology through naturally occurring flora predated all of the above discoveries. Indeed, Sumerian clay slabs as old as 5000 BC detail medicinal recipes which include over 250 plants2. The enhancement of human cognition through natural compounds followed, as people discovered plants containing caffeine, theanine, and other cognition-enhancing, or nootropic, agents.
The surveys just reviewed indicate that many healthy, normal students use prescription stimulants to enhance their cognitive performance, based in part on the belief that stimulants enhance cognitive abilities such as attention and memorization. Of course, it is possible that these users are mistaken. One possibility is that the perceived cognitive benefits are placebo effects. Another is that the drugs alter students’ perceptions of the amount or quality of work accomplished, rather than affecting the work itself (Hurst, Weidner, & Radlow, 1967). A third possibility is that stimulants enhance energy, wakefulness, or motivation, which improves the quality and quantity of work that students can produce with a given, unchanged, level of cognitive ability. To determine whether these drugs enhance cognition in normal individuals, their effects on cognitive task performance must be assessed in relation to placebo in a masked study design.
“Such an informative and inspiring read! Insight into how optimal nutrients improved Cavin’s own brain recovery make this knowledge-filled read compelling and relatable. The recommendations are easy to understand as well as scientifically-founded – it’s not another fad diet manual. The additional tools and resources provided throughout make it possible for anyone to integrate these enhancements into their nutritional repertoire. Looking forward to more from Cavin and Feed a Brain!!!!!!”
Even if you eat foods that contain these nutrients, Hogan says their beneficial effects are in many ways cumulative—meaning the brain perks don’t emerge unless you’ve been eating them for long periods of time. Swallowing more of these brain-enhancing compounds at or after middle-age “may be beyond the critical period” when they’re able to confer cognitive enhancements, he says.

Systematic reviews and meta-analyses of clinical human research using low doses of certain central nervous system stimulants found enhanced cognition in healthy people.[21][22][23] In particular, the classes of stimulants that demonstrate cognition-enhancing effects in humans act as direct agonists or indirect agonists of dopamine receptor D1, adrenoceptor A2, or both types of receptor in the prefrontal cortex.[21][22][24][25] Relatively high doses of stimulants cause cognitive deficits.[24][25]
×