One should note the serious caveats here: it is a small in vitro study of a single category of human cells with an effect size that is not clear on a protein which feeds into who-knows-what pathways. It is not a result in a whole organism on any clinically meaningful endpoint, even if we take it at face-value (many results never replicate). A look at followup work citing Rapuri et al 2007 is not encouraging: Google Scholar lists no human studies of any kind, much less high-quality studies like RCTs; just some rat followups on the calcium effect. This is not to say Rapuri et al 2007 is a bad study, just that it doesn’t bear the weight people are putting on it: if you enjoy caffeine, this is close to zero evidence that you should reduce or drop caffeine consumption; if you’re taking too much caffeine, you already have plenty of reasons to reduce; if you’re drinking lots of coffee, you already have plenty of reasons to switch to tea; etc.
“I am nearly four years out from my traumatic brain injury and I have been through 100’s of hours of rehabilitation therapy. I have been surprised by how little attention is given to adequate nutrition for recovering from TBI. I’m always looking for further opportunities to recover and so this book fell into the right hands. Cavin outlines the science and reasoning behind the diet he suggests, but the real power in this book comes when he writes, “WE.” WE can give our brains proper nutrition. Now I’m excited to drink smoothies and eat breakfasts that look like dinners! I will recommend this book to my friends.
Smart pills have revolutionized the diagnosis of gastrointestinal disorders and could replace conventional diagnostic techniques such as endoscopy. Traditionally, an endoscopy probe is inserted into a patient’s esophagus, and subsequently the upper and lower gastrointestinal tract, for diagnostic purposes. There is a risk of perforation or tearing of the esophageal lining, and the patient faces discomfort during and after the procedure. A smart pill or wireless capsule endoscopy (WCE), however, can easily be swallowed and maneuvered to capture images, and requires minimal patient preparation, such as sedation. The built-in sensors allow the measurement of all fluids and gases in the gut, giving the physician a multidimensional picture of the human body.
For proper brain function, our CNS (Central Nervous System) requires several amino acids. These derive from protein-rich foods. Consider amino acids to be protein building blocks. Many of them are dietary precursors to vital neurotransmitters in our brain. Epinephrine (adrenaline), serotonin, dopamine, and norepinephrine assist in enhancing mental performance. A few examples of amino acid nootropics are:
To judge from recent reports in the popular media, healthy people have also begun to use MPH and AMPs for cognitive enhancement. Major daily newspapers such as The New York Times, The LA Times, and The Wall Street Journal; magazines including Time, The Economist, The New Yorker, and Vogue; and broadcast news organizations including the BBC, CNN, and NPR have reported a trend toward growing use of prescription stimulants by healthy people for the purpose of enhancing school or work performance.
Government restrictions and difficulty getting approval for various medical devices is expected to impede market growth. The stringency of approval by regulatory authorities is accompanied by the high cost of smart pills to challenge the growth of the smart pills market. However, the demand for speedy diagnosis, and improving reimbursement policies are likely to reveal market opportunities.
Hall, Irwin, Bowman, Frankenberger, & Jewett (2005) Large public university undergraduates (N = 379) 13.7% (lifetime) 27%: use during finals week; 12%: use when party; 15.4%: use before tests; 14%: believe stimulants have a positive effect on academic achievement in the long run M = 2.06 (SD = 1.19) purchased stimulants from other students; M = 2.81 (SD = 1.40) have been given stimulants by other studentsb
Critics will often highlight ethical issues and the lack of scientific evidence for these drugs. Ethical arguments typically take the form of “tampering with nature.” Alena Buyx discusses this argument in a neuroethics project called Smart Drugs: Ethical Issues. She says that critics typically ask if it is ethically superior to accept what is “given” instead of striving for what is “made”. My response to this is simple. Just because it is natural does not mean it is superior.
So, I thought I might as well experiment since I have it. I put the 23 remaining pills into gel capsules with brown rice as filling, made ~30 placebo capsules, and will use the one-bag blinding/randomization method. I don’t want to spend the time it would take to n-back every day, so I will simply look for an effect on my daily mood/productivity self-rating; hopefully Noopept will add a little on average above and beyond my existing practices like caffeine+piracetam (yes, Noopept may be as good as piracetam, but since I still have a ton of piracetam from my 3kg order, I am primarily interested in whether Noopept adds onto piracetam rather than replaces). 10mg doses seem to be on the low side for Noopept users, weakening the effect, but on the other hand, if I were to take 2 capsules at a time, then I’d halve the sample size; it’s not clear what is the optimal tradeoff between dose and n for statistical power.
Of all the smart drugs in the world, Modafinil is most often touted as the best. It’s a powerful cognitive enhancer, great for boosting alertness, and has very few, mild side effects that most healthy users will never experience. And no, you can’t have any. Sorry. Modafinil is a prescription medication used to treat disorders like narcolepsy, shift work sleep disorder, and for those who suffer from obstructive sleep apnea.
Common environmental toxins – pesticides, for example – cause your brain to release glutamate (a neurotransmitter). Your brain needs glutamate to function, but when you create too much of it it becomes toxic and starts killing neurons. Oxaloacetate protects rodents from glutamate-induced brain damage.[17] Of course, we need more research to determine whether or not oxaloacetate has the same effect on humans.
With all these studies pointing to the nootropic benefits of some essential oils, it can logically be concluded then that some essential oils can be considered “smart drugs.” However, since essential oils have so much variety and only a small fraction of this wide range has been studied, it cannot be definitively concluded that absolutely all essential oils have brain-boosting benefits. The connection between the two is strong, however.
“I cannot overstate how grateful I am to Cavin for having published this book (and launched his podcast) before I needed it. I am 3.5 months out from a concussion and struggling to recover that final 25% or so of my brain and function. I fully believe that diet and lifestyle can help heal many of our ills, and this book gives me a path forward right now. Gavin’s story is inspiring, and his book is well-researched and clearly written. I am a food geek and so innately understand a lot of his advice — I’m not intimidated by the thought of drastically changing my diet because I know well how to shop and cook for myself — but I so appreciate how his gentle approach and stories about his own struggles with a new diet might help people who would find it all daunting. I am in week 2 of following his advice (and also Dr. Titus Chiu’s BrainSave plan). It’s not an instantaneous miracle cure, but I do feel better in several ways that just might be related to this diet.”
Vitamin B12 is also known as Cobalamin and is a water-soluble essential vitamin.  A (large) deficiency of Vitamin B12 will ultimately lead to cognitive impairment [52]. Older people and people who don’t eat meat are at a higher risk than young people who eat more meat. And people with depression have less Vitamin B12 than the average population [53].
White, Becker-Blease, & Grace-Bishop (2006) 2002 Large university undergraduates and graduates (N = 1,025) 16.2% (lifetime) 68.9%: improve attention; 65.2:% partying; 54.3%: improve study habits; 20%: improve grades; 9.1%: reduce hyperactivity 15.5%: 2–3 times per week; 33.9%: 2–3 times per month; 50.6%: 2–3 times per year 58%: easy or somewhat easy to obtain; write-in comments indicated many obtaining stimulants from friends with prescriptions
The absence of a suitable home for this needed research on the current research funding landscape exemplifies a more general problem emerging now, as applications of neuroscience begin to reach out of the clinical setting and into classrooms, offices, courtrooms, nurseries, marketplaces, and battlefields (Farah, 2011). Most of the longstanding sources of public support for neuroscience research are dedicated to basic research or medical applications. As neuroscience is increasingly applied to solving problems outside the medical realm, it loses access to public funding. The result is products and systems reaching the public with less than adequate information about effectiveness and/or safety. Examples include cognitive enhancement with prescription stimulants, event-related potential and fMRI-based lie detection, neuroscience-based educational software, and anti-brain-aging computer programs. Research and development in nonmedical neuroscience are now primarily the responsibility of private corporations, which have an interest in promoting their products. Greater public support of nonmedical neuroscience research, including methods of cognitive enhancement, will encourage greater knowledge and transparency concerning the efficacy and safety of these products and will encourage the development of products based on social value rather than profit value.
How should the mixed results just summarized be interpreted vis-á-vis the cognitive-enhancing potential of prescription stimulants? One possibility is that d-AMP and MPH enhance cognition, including the retention of just-acquired information and some or all forms of executive function, but that the enhancement effect is small. If this were the case, then many of the published studies were underpowered for detecting enhancement, with most samples sizes under 50. It follows that the observed effects would be inconsistent, a mix of positive and null findings.
If you want to make sure that whatever you’re taking is safe, search for nootropics that have been backed by clinical trials and that have been around long enough for any potential warning signs about that specific nootropic to begin surfacing. There are supplements and nootropics that have been tested in a clinical setting, so there are options out there.
And the drugs are not terribly difficult to get, depending on where you’re located. Modafinil has an annual global share of $700 million, with high estimated off-label use. Although these drugs can be purchased over the internet, their legal status varies between countries. For example, it is legal to possess and use Modafinil in the United Kingdom without a prescription, but not in United States.
“Love this book! Still reading and can’t wait to see what else I learn…and I am not brain injured! Cavin has already helped me to take steps to address my food sensitivity…seems to be helping and I am only on day 5! He has also helped me to help a family member who has suffered a stroke. Thank you Cavin, for sharing all your knowledge and hard work with us! This book is for anyone that wants to understand and implement good nutrition with all the latest research to back it up. Highly recommend!”
Unfortunately, cognitive enhancement falls between the stools of research funding, which makes it unlikely that such research programs will be carried out. Disease-oriented funders will, by definition, not support research on normal healthy individuals. The topic intersects with drug abuse research only in the assessment of risk, leaving out the study of potential benefits, as well as the comparative benefits of other enhancement methods. As a fundamentally applied research question, it will not qualify for support by funders of basic science. The pharmaceutical industry would be expected to support such research only if cognitive enhancement were to be considered a legitimate indication by the FDA, which we hope would happen only after considerably more research has illuminated its risks, benefits, and societal impact. Even then, industry would have little incentive to delve into all of the issues raised here, including the comparison of drug effects to nonpharmaceutical means of enhancing cognition.
Omega-3 fatty acids: DHA and EPA – two Cochrane Collaboration reviews on the use of supplemental omega-3 fatty acids for ADHD and learning disorders conclude that there is limited evidence of treatment benefits for either disorder.[42][43] Two other systematic reviews noted no cognition-enhancing effects in the general population or middle-aged and older adults.[44][45]
×