Phenserine, as well as the drugs Aricept and Exelon, which are already on the market, work by increasing the level of acetylcholine, a neurotransmitter that is deficient in people with the disease. A neurotransmitter is a chemical that allows communication between nerve cells in the brain. In people with Alzheimer's disease, many brain cells have died, so the hope is to get the most out of those that remain by flooding the brain with acetylcholine.
Dallas Michael Cyr, a 41-year-old life coach and business mentor in San Diego, California, also says he experienced a mental improvement when he regularly took another product called Qualia Mind, which its makers say enhances focus, energy, mental clarity, memory and even creativity and mood. "One of the biggest things I noticed was it was much more difficult to be distracted," says Cyr, who took the supplements for about six months but felt their effects last longer. While he's naturally great at starting projects and tasks, the product allowed him to be a "great finisher" too, he says.
It is known that American college students have embraced cognitive enhancement, and some information exists about the demographics of the students most likely to practice cognitive enhancement with prescription stimulants. Outside of this narrow segment of the population, very little is known. What happens when students graduate and enter the world of work? Do they continue using prescription stimulants for cognitive enhancement in their first jobs and beyond? How might the answer to this question depend on occupation? For those who stay on campus to pursue graduate or professional education, what happens to patterns of use? To what extent do college graduates who did not use stimulants as students begin to use them for cognitive enhancement later in their careers? To what extent do workers without college degrees use stimulants to enhance job performance? How do the answers to these questions differ for countries outside of North America, where the studies of Table 1 were carried out?
And there are other uses that may make us uncomfortable. The military is interested in modafinil as a drug to maintain combat alertness. A drug such as propranolol could be used to protect soldiers from the horrors of war. That could be considered a good thing – post-traumatic stress disorder is common in soldiers. But the notion of troops being unaffected by their experiences makes many feel uneasy.
A number of so-called ‘smart drugs’ or cognitive enhancers have captured attention recently, from stimulants such as modafinil, to amphetamines (often prescribed under the name Adderall) and methylphenidate (also known by its brand name Ritalin). According to widespread news reports, students have begun using these drugs to enhance their performance in school and college, and are continuing to do so in their professional lives.

Going back to the 1960s, although it was a Romanian chemist who is credited with discovering nootropics, a substantial amount of research on racetams was conducted in the Soviet Union. This resulted in the birth of another category of substances entirely: adaptogens, which, in addition to benefiting cognitive function were thought to allow the body to better adapt to stress.

Table 4 lists the results of 27 tasks from 23 articles on the effects of d-AMP or MPH on working memory. The oldest and most commonly used type of working memory task in this literature is the Sternberg short-term memory scanning paradigm (Sternberg, 1966), in which subjects hold a set of items (typically letters or numbers) in working memory and are then presented with probe items, to which they must respond “yes” (in the set) or “no” (not in the set). The size of the set, and hence the working memory demand, is sometimes varied, and the set itself may be varied from trial to trial to maximize working memory demands or may remain fixed over a block of trials. Taken together, the studies that have used a version of this task to test the effects of MPH and d-AMP on working memory have found mixed and somewhat ambiguous results. No pattern is apparent concerning the specific version of the task or the specific drug. Four studies found no effect (Callaway, 1983; Kennedy, Odenheimer, Baltzley, Dunlap, & Wood, 1990; Mintzer & Griffiths, 2007; Tipper et al., 2005), three found faster responses with the drugs (Fitzpatrick, Klorman, Brumaghim, & Keefover, 1988; Ward et al., 1997; D. E. Wilson et al., 1971), and one found higher accuracy in some testing sessions at some dosages, but no main effect of drug (Makris et al., 2007). The meaningfulness of the increased speed of responding is uncertain, given that it could reflect speeding of general response processes rather than working memory–related processes. Aspects of the results of two studies suggest that the effects are likely due to processes other than working memory: D. E. Wilson et al. (1971) reported comparable speeding in a simple task without working memory demands, and Tipper et al. (2005) reported comparable speeding across set sizes.

We included studies of the effects of these drugs on cognitive processes including learning, memory, and a variety of executive functions, including working memory and cognitive control. These studies are listed in Table 2, along with each study’s sample size, gender, age and tasks administered. Given our focus on cognition enhancement, we excluded studies whose measures were confined to perceptual or motor abilities. Studies of attention are included when the term attention refers to an executive function but not when it refers to the kind of perceptual process taxed by, for example, visual search or dichotic listening or when it refers to a simple vigilance task. Vigilance may affect cognitive performance, especially under conditions of fatigue or boredom, but a more vigilant person is not generally thought of as a smarter person, and therefore, vigilance is outside of the focus of the present review. The search and selection process is summarized in Figure 2.

Another classic approach to the assessment of working memory is the span task, in which a series of items is presented to the subject for repetition, transcription, or recognition. The longest series that can be reproduced accurately is called the forward span and is a measure of working memory capacity. The ability to reproduce the series in reverse order is tested in backward span tasks and is a more stringent test of working memory capacity and perhaps other working memory functions as well. The digit span task from the Wechsler (1981) IQ test was used in four studies of stimulant effects on working memory. One study showed that d-AMP increased digit span (de Wit et al., 2002), and three found no effects of d-AMP or MPH (Oken, Kishiyama, & Salinsky, 1995; Schmedtje, Oman, Letz, & Baker, 1988; Silber, Croft, Papafotiou, & Stough, 2006). A spatial span task, in which subjects must retain and reproduce the order in which boxes in a scattered spatial arrangement change color, was used by Elliott et al. (1997) to assess the effects of MPH on working memory. For subjects in the group receiving placebo first, MPH increased spatial span. However, for the subjects who received MPH first, there was a nonsignificant opposite trend. The group difference in drug effect is not easily explained. The authors noted that the subjects in the first group performed at an overall lower level, and so, this may be another manifestation of the trend for a larger enhancement effect for less able subjects.
I have also tried to get in contact with senior executives who have experience with these drugs (either themselves or in their firms), but without success. I have to wonder: Are they completely unaware of the drugs’ existence? Or are they actively suppressing the issue? For now, companies can ignore the use of smart drugs. And executives can pretend as if these drugs don’t exist in their workplaces. But they can’t do it forever.
More than once I have seen results indicating that high-IQ types benefit the least from random nootropics; nutritional deficits are the premier example, because high-IQ types almost by definition suffer from no major deficiencies like iodine. But a stimulant modafinil may be another such nootropic (see Cognitive effects of modafinil in student volunteers may depend on IQ, Randall et al 2005), which mentions:
"Piracetam is not a vitamin, mineral, amino acid, herb or other botanical, or dietary substance for use by man to supplement the diet by increasing the total dietary intake. Further, piracetam is not a concentrate, metabolite, constituent, extract or combination of any such dietary ingredient. [...] Accordingly, these products are drugs, under section 201(g)(1)(C) of the Act, 21 U.S.C. § 321(g)(1)(C), because they are not foods and they are intended to affect the structure or any function of the body. Moreover, these products are new drugs as defined by section 201(p) of the Act, 21 U.S.C. § 321(p), because they are not generally recognized as safe and effective for use under the conditions prescribed, recommended, or suggested in their labeling."[33]