At small effects like d=0.07, a nontrivial chance of negative effects, and an unknown level of placebo effects (this was non-blinded, which could account for any residual effects), this strongly implies that LLLT is not doing anything for me worth bothering with. I was pretty skeptical of LLLT in the first place, and if 167 days can’t turn up anything noticeable, I don’t think I’ll be continuing with LLLT usage and will be giving away my LED set. (Should any experimental studies of LLLT for cognitive enhancement in healthy people surface with large quantitative effects - as opposed to a handful of qualitative case studies about brain-damaged people - and I decide to give LLLT another try, I can always just buy another set of LEDs: it’s only ~$15, after all.)
Sounds too good to be true? Welcome to the world of ‘Nootropics’ popularly known as ‘Smart Drugs’ that can help boost your brain’s power. Do you recall the scene from the movie Limitless, where Bradley Cooper’s character uses a smart drug that makes him brilliant? Yes! The effect of Nootropics on your brain is such that the results come as a no-brainer.
70 pairs is 140 blocks; we can drop to 36 pairs or 72 blocks if we accept a power of 0.5/50% chance of reaching significance. (Or we could economize by hoping that the effect size is not 3.5 but maybe twice the pessimistic guess; a d=0.5 at 50% power requires only 12 pairs of 24 blocks.) 70 pairs of blocks of 2 weeks, with 2 pills a day requires (70 \times 2) \times (2 \times 7) \times 2 = 3920 pills. I don’t even have that many empty pills! I have <500; 500 would supply 250 days, which would yield 18 2-week blocks which could give 9 pairs. 9 pairs would give me a power of:
Power-wise, the effects of testosterone are generally reported to be strong and unmistakable. Even a short experiment should work. I would want to measure DNB scores & Mnemosyne review averages as usual, to verify no gross mental deficits; the important measures would be physical activity, so either pedometer or miles on treadmill, and general productivity/mood. The former 2 variables should remain the same or increase, and the latter 2 should increase.
Overall, the studies listed in Table 1 vary in ways that make it difficult to draw precise quantitative conclusions from them, including their definitions of nonmedical use, methods of sampling, and demographic characteristics of the samples. For example, some studies defined nonmedical use in a way that excluded anyone for whom a drug was prescribed, regardless of how and why they used it (Carroll et al., 2006; DeSantis et al., 2008, 2009; Kaloyanides et al., 2007; Low & Gendaszek, 2002; McCabe & Boyd, 2005; McCabe et al., 2004; Rabiner et al., 2009; Shillington et al., 2006; Teter et al., 2003, 2006; Weyandt et al., 2009), whereas others focused on the intent of the user and counted any use for nonmedical purposes as nonmedical use, even if the user had a prescription (Arria et al., 2008; Babcock & Byrne, 2000; Boyd et al., 2006; Hall et al., 2005; Herman-Stahl et al., 2007; Poulin, 2001, 2007; White et al., 2006), and one did not specify its definition (Barrett, Darredeau, Bordy, & Pihl, 2005). Some studies sampled multiple institutions (DuPont et al., 2008; McCabe & Boyd, 2005; Poulin, 2001, 2007), some sampled only one (Babcock & Byrne, 2000; Barrett et al., 2005; Boyd et al., 2006; Carroll et al., 2006; Hall et al., 2005; Kaloyanides et al., 2007; McCabe & Boyd, 2005; McCabe et al., 2004; Shillington et al., 2006; Teter et al., 2003, 2006; White et al., 2006), and some drew their subjects primarily from classes in a single department at a single institution (DeSantis et al., 2008, 2009; Low & Gendaszek, 2002). With few exceptions, the samples were all drawn from restricted geographical areas. Some had relatively high rates of response (e.g., 93.8%; Low & Gendaszek 2002) and some had low rates (e.g., 10%; Judson & Langdon, 2009), the latter raising questions about sample representativeness for even the specific population of students from a given region or institution.
Many over the counter and prescription smart drugs fall under the category of stimulants. These substances contribute to an overall feeling of enhanced alertness and attention, which can improve concentration, focus, and learning. While these substances are often considered safe in moderation, taking too much can cause side effects such as decreased cognition, irregular heartbeat, and cardiovascular problems.
For 2 weeks, upon awakening I took close-up photographs of my right eye. Then I ordered two jars of Life-Extension Sea-Iodine (60x1mg) (1mg being an apparently safe dose), and when it arrived on 10 September 2012, I stopped the photography and began taking 1 iodine pill every other day. I noticed no ill effects (or benefits) after a few weeks and upped the dose to 1 pill daily. After the first jar of 60 pills was used up, I switched to the second jar, and began photography as before for 2 weeks. The photographs were uploaded, cropped by hand in Gimp, and shrunk to more reasonable dimensions; both sets are available in a Zip file.
The majority of smart pills target a limited number of cognitive functions, which is why a group of experts gathered to discover a formula which will empower the entire brain and satisfy the needs of students, athletes, and professionals. Mind Lab Pro® combines 11 natural nootropics to affect all 4 areas of mental performance, unlocking the full potential of your brain. Its carefully designed formula will provide an instant boost, while also delivering long-term benefits.
Clarke and Sokoloff (1998) remarked that although [a] common view equates concentrated mental effort with mental work…there appears to be no increased energy utilization by the brain during such processes (p. 664), and …the areas that participate in the processes of such reasoning represent too small a fraction of the brain for changes in their functional and metabolic activities to be reflected in the energy metabolism of the brain… (p. 675).
Serotonin, or 5-hydroxytryptamine (5-HTP), is another primary neurotransmitter and controls major features of the mental landscape including mood, sleep and appetite. Serotonin is produced within the body by exposure, which is one reason that the folk-remedy of “getting some sun” to fight depression is scientifically credible. Many foods contain natural serotonergic (serotonin-promoting or releasing) compounds, including the well-known chemical L-Tryptophan found in turkey, which can promote sleep after big Thanksgiving dinners.
The price is not as good as multivitamins or melatonin. The studies showing effects generally use pretty high dosages, 1-4g daily. I took 4 capsules a day for roughly 4g of omega acids. The jar of 400 is 100 days’ worth, and costs ~$17, or around 17¢ a day. The general health benefits push me over the edge of favoring its indefinite use, but looking to economize. Usually, small amounts of packaged substances are more expensive than bulk unprocessed, so I looked at fish oil fluid products; and unsurprisingly, liquid is more cost-effective than pills (but like with the powders, straight fish oil isn’t very appetizing) in lieu of membership somewhere or some other price-break. I bought 4 bottles (16 fluid ounces each) for $53.31 total (thanks to coupons & sales), and each bottle lasts around a month and a half for perhaps half a year, or ~$100 for a year’s supply. (As it turned out, the 4 bottles lasted from 4 December 2010 to 17 June 2011, or 195 days.) My next batch lasted 19 August 2011-20 February 2012, and cost $58.27. Since I needed to buy empty 00 capsules (for my lithium experiment) and a book (Stanovich 2010, for SIAI work) from Amazon, I bought 4 more bottles of 16fl oz Nature’s Answer (lemon-lime) at $48.44, which I began using 27 February 2012. So call it ~$70 a year.

Because these drugs modulate important neurotransmitter systems such as dopamine and noradrenaline, users take significant risks with unregulated use. There has not yet been any definitive research into modafinil's addictive potential, how its effects might change with prolonged sleep deprivation, or what side effects are likely at doses outside the prescribed range.


"A system that will monitor their behavior and send signals out of their body and notify their doctor? You would think that, whether in psychiatry or general medicine, drugs for almost any other condition would be a better place to start than a drug for schizophrenia," says Paul Appelbaum, director of Columbia University's psychiatry department in an interview with the New York Times.
Metabolic function smart drugs provide mental benefits by generally facilitating the body’s metabolic processes related to the production of new tissues and the release of energy from food and fat stores. Creatine, a long-time favorite performance-enhancement drug for competitive athletes, was in the news recently when it was found in a double-blind, placebo-controlled crossover trial to have significant cognitive benefits – including both general speed of cognition and improvements in working memory. Ginkgo Biloba is another metabolic function smart drug used to increase memory and improve circulation – however, news from recent studies raises questions about these purported effects.
Past noon, I began to feel better, but since I would be driving to errands around 4 PM, I decided to not risk it and take an hour-long nap, which went well, as did the driving. The evening was normal enough that I forgot I had stayed up the previous night, and indeed, I didn’t much feel like going to bed until past midnight. I then slept well, the Zeo giving me a 108 ZQ (not an all-time record, but still unusual).
Smart drugs, formally known as nootropics, are medications, supplements, and other substances that improve some aspect of mental function. In the broadest sense, smart drugs can include common stimulants such as caffeine, herbal supplements like ginseng, and prescription medications for conditions such as ADHD, Alzheimer's disease, and narcolepsy. These substances can enhance concentration, memory, and learning.
Since dietary supplements do not require double-blind, placebo-controlled, pharmaceutical-style human studies before going to market, there is little incentive for companies to really prove that something does what they say it does. This means that, in practice, nootropics may not live up to all the grandiose, exuberant promises advertised on the bottle in which they come. The flip side, though? There’s no need to procure a prescription in order to try them out. Good news for aspiring biohackers—and for people who have no aspirations to become biohackers, but still want to be Bradley Cooper in Limitless (me).
The placebos can be the usual pills filled with olive oil. The Nature’s Answer fish oil is lemon-flavored; it may be worth mixing in some lemon juice. In Kiecolt-Glaser et al 2011, anxiety was measured via the Beck Anxiety scale; the placebo mean was 1.2 on a standard deviation of 0.075, and the experimental mean was 0.93 on a standard deviation of 0.076. (These are all log-transformed covariates or something; I don’t know what that means, but if I naively plug those numbers into Cohen’s d, I get a very large effect: \frac{1.2 - 0.93}{0.076}=3.55.)
Evidence in support of the neuroprotective effects of flavonoids has increased significantly in recent years, although to date much of this evidence has emerged from animal rather than human studies. Nonetheless, with a view to making recommendations for future good practice, we review 15 existing human dietary intervention studies that have examined the effects of particular types of flavonoid on cognitive performance. The studies employed a total of 55 different cognitive tests covering a broad range of cognitive domains. Most studies incorporated at least one measure of executive function/working memory, with nine reporting significant improvements in performance as a function of flavonoid supplementation compared to a control group. However, some domains were overlooked completely (e.g. implicit memory, prospective memory), and for the most part there was little consistency in terms of the particular cognitive tests used making across study comparisons difficult. Furthermore, there was some confusion concerning what aspects of cognitive function particular tests were actually measuring. Overall, while initial results are encouraging, future studies need to pay careful attention when selecting cognitive measures, especially in terms of ensuring that tasks are actually sensitive enough to detect treatment effects.

Between midnight and 1:36 AM, I do four rounds of n-back: 50/39/30/55%. I then take 1/4th of the pill and have some tea. At roughly 1:30 AM, AngryParsley linked a SF anthology/novel, Fine Structure, which sucked me in for the next 3-4 hours until I finally finished the whole thing. At 5:20 AM, circumstances forced me to go to bed, still having only taken 1/4th of the pill and that determines this particular experiment of sleep; I quickly do some n-back: 29/20/20/54/42. I fall asleep in 13 minutes and sleep for 2:48, for a ZQ of 28 (a full night being ~100). I did not notice anything from that possible modafinil+caffeine interaction. Subjectively upon awakening: I don’t feel great, but I don’t feel like 2-3 hours of sleep either. N-back at 10 AM after breakfast: 25/54/44/38/33. These are not very impressive, but seem normal despite taking the last armodafinil ~9 hours ago; perhaps the 3 hours were enough. Later that day, at 11:30 PM (just before bed): 26/56/47.
Systematic reviews and meta-analyses of clinical human research using low doses of certain central nervous system stimulants found enhanced cognition in healthy people.[21][22][23] In particular, the classes of stimulants that demonstrate cognition-enhancing effects in humans act as direct agonists or indirect agonists of dopamine receptor D1, adrenoceptor A2, or both types of receptor in the prefrontal cortex.[21][22][24][25] Relatively high doses of stimulants cause cognitive deficits.[24][25]
×