Do you start your day with a cup (or two, or three) of coffee? It tastes delicious, but it’s also jump-starting your brain because of its caffeine content. Caffeine is definitely a nootropic substance—it’s a mild stimulant that can alleviate fatigue and improve concentration, according to the Mayo Clinic. Current research shows that coffee drinkers don’t suffer any ill effects from drinking up to about four cups of coffee per day. Caffeine is also found in tea, soda, and energy drinks. Not too surprisingly, it’s also in many of the nootropic supplements that are being marketed to people looking for a mental boost. Take a look at these 7 genius brain boosters to try in the morning.

At small effects like d=0.07, a nontrivial chance of negative effects, and an unknown level of placebo effects (this was non-blinded, which could account for any residual effects), this strongly implies that LLLT is not doing anything for me worth bothering with. I was pretty skeptical of LLLT in the first place, and if 167 days can’t turn up anything noticeable, I don’t think I’ll be continuing with LLLT usage and will be giving away my LED set. (Should any experimental studies of LLLT for cognitive enhancement in healthy people surface with large quantitative effects - as opposed to a handful of qualitative case studies about brain-damaged people - and I decide to give LLLT another try, I can always just buy another set of LEDs: it’s only ~$15, after all.)
We can read off the results from the table or graph: the nicotine days average 1.1% higher, for an effect size of 0.24; however, the 95% credible interval (equivalent of confidence interval) goes all the way from 0.93 to -0.44, so we cannot exclude 0 effect and certainly not claim confidence the effect size must be >0.1. Specifically, the analysis gives a 66% chance that the effect size is >0.1. (One might wonder if any increase is due purely to a training effect - getting better at DNB. Probably not25.)

A new all-in-one nootropic mix/company run by some people active on /r/nootropics; they offered me a month’s supply for free to try & review for them. At ~$100 a month (it depends on how many months one buys), it is not cheap (John Backus estimates one could buy the raw ingredients for $25/month) but it provides convenience & is aimed at people uninterested in spending a great deal of time reviewing research papers & anecdotes or capping their own pills (ie. people with lives) and it’s unlikely I could spare the money to subscribe if TruBrain worked well for me - but certainly there was no harm in trying it out.
It’s not clear that there is much of an effect at all. This makes it hard to design a self-experiment - how big an effect on, say, dual n-back should I be expecting? Do I need an arduous long trial or an easy short one? This would principally determine the value of information too; chocolate seems like a net benefit even if it does not affect the mind, but it’s also fairly costly, especially if one likes (as I do) dark chocolate. Given the mixed research, I don’t think cocoa powder is worth investigating further as a nootropic.
The absence of a suitable home for this needed research on the current research funding landscape exemplifies a more general problem emerging now, as applications of neuroscience begin to reach out of the clinical setting and into classrooms, offices, courtrooms, nurseries, marketplaces, and battlefields (Farah, 2011). Most of the longstanding sources of public support for neuroscience research are dedicated to basic research or medical applications. As neuroscience is increasingly applied to solving problems outside the medical realm, it loses access to public funding. The result is products and systems reaching the public with less than adequate information about effectiveness and/or safety. Examples include cognitive enhancement with prescription stimulants, event-related potential and fMRI-based lie detection, neuroscience-based educational software, and anti-brain-aging computer programs. Research and development in nonmedical neuroscience are now primarily the responsibility of private corporations, which have an interest in promoting their products. Greater public support of nonmedical neuroscience research, including methods of cognitive enhancement, will encourage greater knowledge and transparency concerning the efficacy and safety of these products and will encourage the development of products based on social value rather than profit value.
This world is a competitive place. If you’re not seeking an advantage, you’ll get passed by those who do. Whether you’re studying for a final exam or trying to secure a big business deal, you need a definitive mental edge. Are smart drugs and brain-boosting pills the answer for cognitive enhancement in 2019? If you’re not cheating, you’re not trying, right? Bad advice for some scenarios, but there is a grain of truth to every saying—even this one.
White, Becker-Blease, & Grace-Bishop (2006) 2002 Large university undergraduates and graduates (N = 1,025) 16.2% (lifetime) 68.9%: improve attention; 65.2:% partying; 54.3%: improve study habits; 20%: improve grades; 9.1%: reduce hyperactivity 15.5%: 2–3 times per week; 33.9%: 2–3 times per month; 50.6%: 2–3 times per year 58%: easy or somewhat easy to obtain; write-in comments indicated many obtaining stimulants from friends with prescriptions
Nevertheless, a drug that improved your memory could be said to have made you smarter. We tend to view rote memory, the ability to memorize facts and repeat them, as a dumber kind of intelligence than creativity, strategy, or interpersonal skills. "But it is also true that certain abilities that we view as intelligence turn out to be in fact a very good memory being put to work," Farah says.
The stimulant now most popular in news articles as a legitimate “smart drug” is Modafinil, which came to market as an anti-narcolepsy drug, but gained a following within the military, doctors on long shifts, and college students pulling all-nighters who needed a drug to improve alertness without the “wired” feeling associated with caffeine. Modafinil is a relatively new smart drug, having gained widespread use only in the past 15 years. More research is needed before scientists understand this drug’s function within the brain – but the increase in alertness it provides is uncontested.
Not that everyone likes to talk about using the drugs. People don’t necessarily want to reveal how they get their edge and there is stigma around people trying to become smarter than their biology dictates, says Lawler. Another factor is undoubtedly the risks associated with ingesting substances bought on the internet and the confusing legal statuses of some. Phenylpiracetam, for example, is a prescription drug in Russia. It isn’t illegal to buy in the US, but the man-made chemical exists in a no man’s land where it is neither approved nor outlawed for human consumption, notes Lawler.
Smart drugs, formally known as nootropics, are medications, supplements, and other substances that improve some aspect of mental function. In the broadest sense, smart drugs can include common stimulants such as caffeine, herbal supplements like ginseng, and prescription medications for conditions such as ADHD, Alzheimer's disease, and narcolepsy. These substances can enhance concentration, memory, and learning.
Since my experiment had a number of flaws (non-blind, varying doses at varying times of day), I wound up doing a second better experiment using blind standardized smaller doses in the morning. The negative effect was much smaller, but there was still no mood/productivity benefit. Having used up my first batch of potassium citrate in these 2 experiments, I will not be ordering again since it clearly doesn’t work for me.

Clarke and Sokoloff (1998) remarked that although [a] common view equates concentrated mental effort with mental work…there appears to be no increased energy utilization by the brain during such processes (p. 664), and …the areas that participate in the processes of such reasoning represent too small a fraction of the brain for changes in their functional and metabolic activities to be reflected in the energy metabolism of the brain… (p. 675).


The general cost of fish oil made me interested in possible substitutes. Seth Roberts uses exclusively flaxseed oil or flaxseed meal, and this seems to work well for him with subjective effects (eg. noticing his Chinese brands seemed to not work, possibly because they were unrefrigerated and slightly rancid). It’s been studied much less than fish oil, but omega acids are confusing enough in general (is there a right ratio? McCluskey’s roundup gives the impression claims about ratios may have been overstated) that I’m not convinced ALA is a much inferior replacement for fish oil’s mixes of EPA & DHA.
When you hear about nootropics, often called “smart drugs,” you probably picture something like the scene above from Limitless, where Bradley Cooper’s character becomes brilliant after downing a strange pill. The drugs and supplements currently available don’t pack that strong of a punch, but the concept is basically the same. Many nootropics have promising benefits, like boosting memory, focus, or motivation, and there’s research to support specific uses. But the most effective nootropics, like Modafinil, aren’t intended for use without a prescription to treat a specific condition. In fact, recreational use of nootropics is hotly-debated among doctors and medical researchers. Many have concerns about the possible adverse effects of long-term use, as well as the ethics of using cognitive enhancers to gain an advantage in school, sports, or even everyday work.
That doesn’t necessarily mean all smart drugs – now and in the future – will be harmless, however. The brain is complicated. In trying to upgrade it, you risk upsetting its intricate balance. “It’s not just about more, it’s about having to be exquisitely and exactly right. And that’s very hard to do,” says Arnstein. “What’s good for one system may be bad for another system,” adds Trevor Robbins, Professor of Cognitive Neuroscience at the University of Cambridge. “It’s clear from the experimental literature that you can affect memory with pharmacological agents, but the problem is keeping them safe.”
But, thanks to the efforts of a number of remarkable scientists, researchers and plain-old neurohackers, we are beginning to put together a “whole systems” model of how all the different parts of the human brain work together and how they mesh with the complex regulatory structures of the body. It’s going to take a lot more data and collaboration to dial this model in, but already we are empowered to design stacks that can meaningfully deliver on the promise of nootropics “to enhance the quality of subjective experience and promote cognitive health, while having extremely low toxicity and possessing very few side effects.” It’s a type of brain hacking that is intended to produce noticeable cognitive benefits.
A provisional conclusion about the effects of stimulants on learning is that they do help with the consolidation of declarative learning, with effect sizes varying widely from small to large depending on the task and individual study. Indeed, as a practical matter, stimulants may be more helpful than many of the laboratory tasks indicate, given the apparent dependence of enhancement on length of delay before testing. Although, as a matter of convenience, experimenters tend to test memory for learned material soon after the learning, this method has not generally demonstrated stimulant-enhanced learning. However, when longer periods intervene between learning and test, a more robust enhancement effect can be seen. Note that the persistence of the enhancement effect well past the time of drug action implies that state-dependent learning is not responsible. In general, long-term effects on learning are of greater practical value to people. Even students cramming for exams need to retain information for more than an hour or two. We therefore conclude that stimulant medication does enhance learning in ways that may be useful in the real world.
Unfortunately, cognitive enhancement falls between the stools of research funding, which makes it unlikely that such research programs will be carried out. Disease-oriented funders will, by definition, not support research on normal healthy individuals. The topic intersects with drug abuse research only in the assessment of risk, leaving out the study of potential benefits, as well as the comparative benefits of other enhancement methods. As a fundamentally applied research question, it will not qualify for support by funders of basic science. The pharmaceutical industry would be expected to support such research only if cognitive enhancement were to be considered a legitimate indication by the FDA, which we hope would happen only after considerably more research has illuminated its risks, benefits, and societal impact. Even then, industry would have little incentive to delve into all of the issues raised here, including the comparison of drug effects to nonpharmaceutical means of enhancing cognition.
Manually mixing powders is too annoying, and pre-mixed pills are expensive in bulk. So if I’m not actively experimenting with something, and not yet rich, the best thing is to make my own pills, and if I’m making my own pills, I might as well make a custom formulation using the ones I’ve found personally effective. And since making pills is tedious, I want to not have to do it again for years. 3 years seems like a good interval - 1095 days. Since one is often busy and mayn’t take that day’s pills (there are enough ingredients it has to be multiple pills), it’s safe to round it down to a nice even 1000 days. What sort of hypothetical stack could I make? What do the prices come out to be, and what might we omit in the interests of protecting our pocketbook?
Please note: Smart Pills, Smart Drugs or Brain Food Supplements are also known as: Brain Smart Vitamins, Brain Tablets, Brain Vitamins, Brain Booster Supplements, Brain Enhancing Supplements, Cognitive Enhancers, Focus Enhancers, Concentration Supplements, Mental Focus Supplements, Mind Supplements, Neuro Enhancers, Neuro Focusers, Vitamins for Brain Function,Vitamins for Brain Health, Smart Brain Supplements, Nootropics, or "Natural Nootropics"
"A system that will monitor their behavior and send signals out of their body and notify their doctor? You would think that, whether in psychiatry or general medicine, drugs for almost any other condition would be a better place to start than a drug for schizophrenia," says Paul Appelbaum, director of Columbia University's psychiatry department in an interview with the New York Times.
It is not because of the few thousand francs which would have to be spent to put a roof [!] over the third-class carriages or to upholster the third-class seats that some company or other has open carriages with wooden benches. What the company is trying to do is to prevent the passengers who can pay the second class fare from traveling third class; it hits the poor, not because it wants to hurt them, but to frighten the rich. And it is again for the same reason that the companies, having proved almost cruel to the third-class passengers and mean to the second-class ones, become lavish in dealing with first-class passengers. Having refused the poor what is necessary, they give the rich what is superfluous.
That said, there are plenty of studies out there that point to its benefits. One study, published in the British Journal of Pharmacology, suggests brain function in elderly patients can be greatly improved after regular dosing with Piracetam. Another study, published in the journal Psychopharmacology, found that Piracetam improved memory in most adult volunteers. And another, published in the Journal of Clinical Psychopharmacology, suggests it can help students, especially dyslexic students, improve their nonverbal learning skills, like reading ability and reading comprehension. Basically, researchers know it has an effect, but they don’t know what or how, and pinning it down requires additional research.
Finally, two tasks measuring subjects’ ability to control their responses to monetary rewards were used by de Wit et al. (2002) to assess the effects of d-AMP. When subjects were offered the choice between waiting 10 s between button presses for high-probability rewards, which would ultimately result in more money, and pressing a button immediately for lower probability rewards, d-AMP did not affect performance. However, when subjects were offered choices between smaller rewards delivered immediately and larger rewards to be delivered at later times, the normal preference for immediate rewards was weakened by d-AMP. That is, subjects were more able to resist the impulse to choose the immediate reward in favor of the larger reward.
In my last post, I talked about the idea that there is a resource that is necessary for self-control…I want to talk a little bit about the candidate for this resource, glucose. Could willpower fail because the brain is low on sugar? Let’s look at the numbers. A well-known statistic is that the brain, while only 2% of body weight, consumes 20% of the body’s energy. That sounds like the brain consumes a lot of calories, but if we assume a 2,400 calorie/day diet - only to make the division really easy - that’s 100 calories per hour on average, 20 of which, then, are being used by the brain. Every three minutes, then, the brain - which includes memory systems, the visual system, working memory, then emotion systems, and so on - consumes one (1) calorie. One. Yes, the brain is a greedy organ, but it’s important to keep its greediness in perspective… Suppose, for instance, that a brain in a person exerting their willpower - resisting eating brownies or what have you - used twice as many calories as a person not exerting willpower. That person would need an extra one third of a calorie per minute to make up the difference compared to someone not exerting willpower. Does exerting self control burn more calories?
Over the last few months, as part of a new research project, I have talked with five people who regularly use drugs at work. They are all successful in their jobs, financially secure, in stable relationships, and generally content with their lives. None of them have plans to stop using the drugs, and so far they have kept the secret from their employers. But as their colleagues become more likely to start using the same drugs (people talk, after all), will they continue to do so?
Smart pills have revolutionized the diagnosis of gastrointestinal disorders and could replace conventional diagnostic techniques such as endoscopy. Traditionally, an endoscopy probe is inserted into a patient’s esophagus, and subsequently the upper and lower gastrointestinal tract, for diagnostic purposes. There is a risk of perforation or tearing of the esophageal lining, and the patient faces discomfort during and after the procedure. A smart pill or wireless capsule endoscopy (WCE), however, can easily be swallowed and maneuvered to capture images, and requires minimal patient preparation, such as sedation. The built-in sensors allow the measurement of all fluids and gases in the gut, giving the physician a multidimensional picture of the human body.
The choline-based class of smart drugs play important cognitive roles in memory, attention, and mood regulation. Acetylcholine (ACh) is one of the brain’s primary neurotransmitters, and also vital in the proper functioning of the peripheral nervous system. Studies with rats have shown that certain forms of learning and neural plasticity seem to be impossible in acetylcholine-depleted areas of the brain. This is particularly worth mentioning because (as noted above under the Racetams section), the Racetam class of smart drugs tends to deplete cholines from the brain, so one of the classic “supplement stacks” – chemical supplements that are used together – are Piracetam and Choline Bitartrate. Cholines can also be found in normal food sources, like egg yolks and soybeans.

That first night, I had severe trouble sleeping, falling asleep in 30 minutes rather than my usual 19.6±11.9, waking up 12 times (5.9±3.4), and spending ~90 minutes awake (18.1±16.2), and naturally I felt unrested the next day; I initially assumed it was because I had left a fan on (moving air keeps me awake) but the new potassium is also a possible culprit. When I asked, Kevin said:
Nondrug cognitive-enhancement methods include the high tech and the low. An example of the former is transcranial magnetic stimulation (TMS), whereby weak currents are induced in specific brain areas by magnetic fields generated outside the head. TMS is currently being explored as a therapeutic modality for neuropsychiatric conditions as diverse as depression and ADHD and is capable of enhancing the cognition of normal healthy people (e.g., Kirschen, Davis-Ratner, Jerde, Schraedley-Desmond, & Desmond, 2006). An older technique, transcranial direct current stimulation (tDCS), has become the subject of renewed research interest and has proven capable of enhancing the cognitive performance of normal healthy individuals in a variety of tasks. For example, Flöel, Rösser, Michka, Knecht, and Breitenstein (2008) reported enhancement of learning and Dockery, Hueckel-Weng, Birbaumer, and Plewnia (2009) reported enhancement of planning with tDCS.
In general, I feel a little bit less alert, but still close to normal. By 6PM, I have a mild headache, but I try out 30 rounds of gbrainy (haven’t played it in months) and am surprised to find that I reach an all-time high; no idea whether this is due to DNB or not, since Gbrainy is very heavily crystallized (half the challenge disappears as you learn how the problems work), but it does indicate I’m not deluding myself about mental ability. (To give a figure: my last score well before I did any DNB was 64, and I was doing well that day; on modafinil, I had a 77.) I figure the headache might be food related, eat, and by 7:30 the headache is pretty much gone and I’m fine up to midnight.
One curious thing that leaps out looking at the graphs is that the estimated underlying standard deviations differ: the nicotine days have a strikingly large standard deviation, indicating greater variability in scores - both higher and lower, since the means weren’t very different. The difference in standard deviations is just 6.6% below 0, so the difference almost reaches our usual frequentist levels of confidence too, which we can verify by testing:

My predictions were substantially better than random chance7, so my default belief - that Adderall does affect me and (mostly) for the better - is borne out. I usually sleep very well and 3 separate incidents of horrible sleep in a few weeks seems rather unlikely (though I didn’t keep track of dates carefully enough to link the Zeo data with the Adderall data). Between the price and the sleep disturbances, I don’t think Adderall is personally worthwhile.

If you could take a drug to boost your brainpower, would you? This question, faced by Bradley Cooper’s character in the big-budget movie Limitless, is now facing students who are frantically revising for exams. Although they are nowhere near the strength of the drug shown in the film, mind-enhancing drugs are already on the pharmacy shelves, and many people are finding the promise of sharper thinking through chemistry highly seductive.
In this large population-based cohort, we saw consistent robust associations between cola consumption and low BMD in women. The consistency of pattern across cola types and after adjustment for potential confounding variables, including calcium intake, supports the likelihood that this is not due to displacement of milk or other healthy beverages in the diet. The major differences between cola and other carbonated beverages are caffeine, phosphoric acid, and cola extract. Although caffeine likely contributes to lower BMD, the result also observed for decaffeinated cola, the lack of difference in total caffeine intake across cola intake groups, and the lack of attenuation after adjustment for caffeine content suggest that caffeine does not explain these results. A deleterious effect of phosphoric acid has been proposed (26). Cola beverages contain phosphoric acid, whereas other carbonated soft drinks (with some exceptions) do not.

These are quite abstract concepts, though. There is a large gap, a grey area in between these concepts and our knowledge of how the brain functions physiologically – and it’s in this grey area that cognitive enhancer development has to operate. Amy Arnsten, Professor of Neurobiology at Yale Medical School, is investigating how the cells in the brain work together to produce our higher cognition and executive function, which she describes as “being able to think about things that aren’t currently stimulating your senses, the fundamentals of abstraction. This involves mental representations of our goals for the future, even if it’s the future in just a few seconds.”
Caveats aside, if you do want to try a nootropic, consider starting with something simple and pretty much risk-free, like aromatherapy with lemon essential oil or frankincense, which can help activate your brain, Barbour says. You could also sip on "golden milk," a sweet and anti-inflammatory beverage made with turmeric, or rosemary-infused water, she adds.
Two studies investigated the effects of MPH on reversal learning in simple two-choice tasks (Clatworthy et al., 2009; Dodds et al., 2008). In these tasks, participants begin by choosing one of two stimuli and, after repeated trials with these stimuli, learn that one is usually rewarded and the other is usually not. The rewarded and nonrewarded stimuli are then reversed, and participants must then learn to choose the new rewarded stimulus. Although each of these studies found functional neuroimaging correlates of the effects of MPH on task-related brain activity (increased blood oxygenation level-dependent signal in frontal and striatal regions associated with task performance found by Dodds et al., 2008, using fMRI and increased dopamine release in the striatum as measured by increased raclopride displacement by Clatworthy et al., 2009, using PET), neither found reliable effects on behavioral performance in these tasks. The one significant result concerning purely behavioral measures was Clatworthy et al.’s (2009) finding that participants who scored higher on a self-report personality measure of impulsivity showed more performance enhancement with MPH. MPH’s effect on performance in individuals was also related to its effects on individuals’ dopamine activity in specific regions of the caudate nucleus.

How much of the nonmedical use of prescription stimulants documented by these studies was for cognitive enhancement? Prescription stimulants could be used for purposes other than cognitive enhancement, including for feelings of euphoria or energy, to stay awake, or to curb appetite. Were they being used by students as smart pills or as “fun pills,” “awake pills,” or “diet pills”? Of course, some of these categories are not entirely distinct. For example, by increasing the wakefulness of a sleep-deprived person or by lifting the mood or boosting the motivation of an apathetic person, stimulants are likely to have the secondary effect of improving cognitive performance. Whether and when such effects should be classified as cognitive enhancement is a question to which different answers are possible, and none of the studies reviewed here presupposed an answer. Instead, they show how the respondents themselves classified their reasons for nonmedical stimulant use.

Spaced repetition at midnight: 3.68. (Graphing preceding and following days: ▅▄▆▆▁▅▆▃▆▄█ ▄ ▂▄▄▅) DNB starting 12:55 AM: 30/34/41. Transcribed Sawaragi 2005, then took a walk. DNB starting 6:45 AM: 45/44/33. Decided to take a nap and then take half the armodafinil on awakening, before breakfast. I wound up oversleeping until noon (4:28); since it was so late, I took only half the armodafinil sublingually. I spent the afternoon learning how to do value of information calculations, and then carefully working through 8 or 9 examples for my various pages, which I published on Lesswrong. That was a useful little project. DNB starting 12:09 AM: 30/38/48. (To graph the preceding day and this night: ▇▂█▆▅▃▃▇▇▇▁▂▄ ▅▅▁▁▃▆) Nights: 9:13; 7:24; 9:13; 8:20; 8:31.
And yet aside from anecdotal evidence, we know very little about the use of these drugs in professional settings. The Financial Times has claimed that they are “becoming popular among city lawyers, bankers, and other professionals keen to gain a competitive advantage over colleagues.” Back in 2008 the narcolepsy medication Modafinil was labeled the “entrepreneur’s drug of choice” by TechCrunch. That same year, the magazine Nature asked its readers whether they use cognitive-enhancing drugs; of the 1,400 respondents, one in five responded in the affirmative.
Up to 20% of Ivy League college students have already tried “smart drugs,” so we can expect these pills to feature prominently in organizations (if they don’t already). After all, the pressure to perform is unlikely to disappear the moment students graduate. And senior employees with demanding jobs might find these drugs even more useful than a 19-year-old college kid does. Indeed, a 2012 Royal Society report emphasized that these “enhancements,” along with other technologies for self-enhancement, are likely to have far-reaching implications for the business world.
The FDA has approved the first smart pill for use in the United States. Called Abilify MyCite, the pill contains a drug and an ingestible sensor that is activated when it comes into contact with stomach fluid to detect when the pill has been taken. The pill then transmits this data to a wearable patch that subsequently transfers the information to an app on a paired smartphone. From that point, with a patient's consent, the data can be accessed by the patient's doctors or caregivers via a web portal.
Weyandt et al. (2009) Large public university undergraduates (N = 390) 7.5% (past 30 days) Highest rated reasons were to perform better on schoolwork, perform better on tests, and focus better in class 21.2% had occasionally been offered by other students; 9.8% occasionally or frequently have purchased from other students; 1.4% had sold to other students
One study of helicopter pilots suggested that 600 mg of modafinil given in three doses can be used to keep pilots alert and maintain their accuracy at pre-deprivation levels for 40 hours without sleep.[60] However, significant levels of nausea and vertigo were observed. Another study of fighter pilots showed that modafinil given in three divided 100 mg doses sustained the flight control accuracy of sleep-deprived F-117 pilots to within about 27% of baseline levels for 37 hours, without any considerable side effects.[61] In an 88-hour sleep loss study of simulated military grounds operations, 400 mg/day doses were mildly helpful at maintaining alertness and performance of subjects compared to placebo, but the researchers concluded that this dose was not high enough to compensate for most of the effects of complete sleep loss.
I took the pill at 11 PM the evening of (technically, the day before); that day was a little low on sleep than usual, since I had woken up an hour or half-hour early. I didn’t yawn at all during the movie (merely mediocre to my eyes with some questionable parts)22. It worked much the same as it did the previous time - as I walked around at 5 AM or so, I felt perfectly alert. I made good use of the hours and wrote up my memories of ICON 2011.
Even the best of today’s nootropics only just barely scratch the surface. You might say that we are in the “Nokia 1100” phase of taking nootropics, and as better tools and more data come along, the leading thinkers in the space see a powerful future. For example, they are already beginning to look past biochemistry to the epigenome. Not only is the epigenome the code that runs much of your native biochemistry, we now know that experiences in life can be recorded in your epigenome and then passed onto future generations. There is every reason to believe that you are currently running epigenetic code that you inherited from your great-grandmother’s life experiences. And there is every reason to believe that the epigenome can be hacked – that the nootropics of the future can not only support and enhance our biochemistry, but can permanently change the epigenetic code that drives that biochemistry and that we pass onto our children. This is why many healthy individuals use nootropics. They have great benefits and can promote brain function and reduce oxidative stress. They can also improve sleep quality.
×