Amphetamines have a long track record as smart drugs, from the workaholic mathematician Paul Erdös, who relied on them to get through 19-hour maths binges, to the writer Graham Greene, who used them to write two books at once. More recently, there are plenty of anecdotal accounts in magazines about their widespread use in certain industries, such as journalism, the arts and finance.
These days, young, ambitious professionals prefer prescription stimulants—including methylphenidate (usually sold as Ritalin) and Adderall—that are designed to treat people with attention deficit hyperactivity disorder (ADHD) and are more common and more acceptable than cocaine or nicotine (although there is a black market for these pills). ADHD makes people more likely to lose their focus on tasks and to feel restless and impulsive. Diagnoses of the disorder have been rising dramatically over the past few decades—and not just in kids: In 2012, about 16 million Adderall prescriptions were written for adults between the ages of 20 and 39, according to a report in the New York Times. Both methylphenidate and Adderall can improve sustained attention and concentration, says Barbara Sahakian, professor of clinical neuropsychology at the University of Cambridge and author of the 2013 book Bad Moves: How Decision Making Goes Wrong, and the Ethics of Smart Drugs. But the drugs do have side effects, including insomnia, lack of appetite, mood swings, and—in extreme cases—hallucinations, especially when taken in amounts the exceed standard doses. Take a look at these 10 foods that help you focus.
These pills don’t work. The reality is that MOST of these products don’t work effectively. Maybe we’re cynical, but if you simply review the published studies on memory pills, you can quickly eliminate many of the products that don’t have “the right stuff.” The active ingredients in brain and memory health pills are expensive and most companies sell a watered down version that is not effective for memory and focus. The more brands we reviewed, the more we realized that many of these marketers are slapping slick labels on low-grade ingredients.
For 2 weeks, upon awakening I took close-up photographs of my right eye. Then I ordered two jars of Life-Extension Sea-Iodine (60x1mg) (1mg being an apparently safe dose), and when it arrived on 10 September 2012, I stopped the photography and began taking 1 iodine pill every other day. I noticed no ill effects (or benefits) after a few weeks and upped the dose to 1 pill daily. After the first jar of 60 pills was used up, I switched to the second jar, and began photography as before for 2 weeks. The photographs were uploaded, cropped by hand in Gimp, and shrunk to more reasonable dimensions; both sets are available in a Zip file.
One of the most obscure -racetams around, coluracetam (Smarter Nootropics, Ceretropic, Isochroma) acts in a different way from piracetam - piracetam apparently attacks the breakdown of acetylcholine while coluracetam instead increases how much choline can be turned into useful acetylcholine. This apparently is a unique mechanism. A crazy Longecity user, ScienceGuy ponied up $16,000 (!) for a custom synthesis of 500g; he was experimenting with 10-80mg sublingual doses (the ranges in the original anti-depressive trials) and reported a laundry list of effects (as does Isochroma): primarily that it was anxiolytic and increased work stamina. Unfortunately for my stack, he claims it combines poorly with piracetam. He offered free 2g samples for regulars to test his claims. I asked & received some.

I took the first pill at 12:48 pm. 1:18, still nothing really - head is a little foggy if anything. later noticed a steady sort of mental energy lasting for hours (got a good deal of reading and programming done) until my midnight walk, when I still felt alert, and had trouble sleeping. (Zeo reported a ZQ of 100, but a full 18 minutes awake, 2 or 3 times the usual amount.)

After 7 days, I ordered a kg of choline bitartrate from Bulk Powders. Choline is standard among piracetam-users because it is pretty universally supported by anecdotes about piracetam headaches, has support in rat/mice experiments27, and also some human-related research. So I figured I couldn’t fairly test piracetam without some regular choline - the eggs might not be enough, might be the wrong kind, etc. It has a quite distinctly fishy smell, but the actual taste is more citrus-y, and it seems to neutralize the piracetam taste in tea (which makes things much easier for me).
Two studies investigated the effects of MPH on reversal learning in simple two-choice tasks (Clatworthy et al., 2009; Dodds et al., 2008). In these tasks, participants begin by choosing one of two stimuli and, after repeated trials with these stimuli, learn that one is usually rewarded and the other is usually not. The rewarded and nonrewarded stimuli are then reversed, and participants must then learn to choose the new rewarded stimulus. Although each of these studies found functional neuroimaging correlates of the effects of MPH on task-related brain activity (increased blood oxygenation level-dependent signal in frontal and striatal regions associated with task performance found by Dodds et al., 2008, using fMRI and increased dopamine release in the striatum as measured by increased raclopride displacement by Clatworthy et al., 2009, using PET), neither found reliable effects on behavioral performance in these tasks. The one significant result concerning purely behavioral measures was Clatworthy et al.’s (2009) finding that participants who scored higher on a self-report personality measure of impulsivity showed more performance enhancement with MPH. MPH’s effect on performance in individuals was also related to its effects on individuals’ dopamine activity in specific regions of the caudate nucleus.
My answer is that this is not a lot of research or very good research (not nearly as good as the research on nicotine, eg.), and assuming it’s true, I don’t value long-term memory that much because LTM is something that is easily assisted or replaced (personal archives, and spaced repetition). For me, my problems tend to be more about akrasia and energy and not getting things done, so even if a stimulant comes with a little cost to long-term memory, it’s still useful for me. I’m going continue to use the caffeine. It’s not so bad in conjunction with tea, is very cheap, and I’m already addicted, so why not? Caffeine is extremely cheap, addictive, has minimal effects on health (and may be beneficial, from the various epidemiological associations with tea/coffee/chocolate & longevity), and costs extra to remove from drinks popular regardless of their caffeine content (coffee and tea again). What would be the point of carefully investigating it? Suppose there was conclusive evidence on the topic, the value of this evidence to me would be roughly $0 or since ignorance is bliss, negative money - because unless the negative effects were drastic (which current studies rule out, although tea has other issues like fluoride or metal contents), I would not change anything about my life. Why? I enjoy my tea too much. My usual tea seller doesn’t even have decaffeinated oolong in general, much less various varieties I might want to drink, apparently because de-caffeinating is so expensive it’s not worthwhile. What am I supposed to do, give up my tea and caffeine just to save on the cost of caffeine? Buy de-caffeinating machines (which I couldn’t even find any prices for, googling)? This also holds true for people who drink coffee or caffeinated soda. (As opposed to a drug like modafinil which is expensive, and so the value of a definitive answer is substantial and would justify some more extensive calculating of cost-benefit.)
Racetams are often used as a smart drug by finance workers, students, and individuals in high-pressure jobs as a way to help them get into a mental flow state and work for long periods of time. Additionally, the habits and skills that an individual acquires while using a racetam can still be accessed when someone is not taking racetams because it becomes a habit.
Among the questions to be addressed in the present article are, How widespread is the use of prescription stimulants for cognitive enhancement? Who uses them, for what specific purposes? Given that nonmedical use of these substances is illegal, how are they obtained? Furthermore, do these substances actually enhance cognition? If so, what aspects of cognition do they enhance? Is everyone able to be enhanced, or are some groups of healthy individuals helped by these drugs and others not? The goal of this article is to address these questions by reviewing and synthesizing findings from the existing scientific literature. We begin with a brief overview of the psychopharmacology of the two most commonly used prescription stimulants.
These days, nootropics are beginning to take their rightful place as a particularly powerful tool in the Neurohacker’s toolbox. After all, biochemistry is deeply foundational to neural function. Whether you are trying to fix the damage that is done to your nervous system by a stressful and toxic environment or support and enhance your neural functioning, getting the chemistry right is table-stakes. And we are starting to get good at getting it right. What’s changed?
One of the most widely known classes of smart drugs on the market, Racetams, have a long history of use and a lot of evidence of their effectiveness. They hasten the chemical exchange between brain cells, directly benefiting our mental clarity and learning process. They are generally not controlled substances and can be purchased without a prescription in a lot of locations globally.

My worry about the MP variable is that, plausible or not, it does seem relatively weak against manipulation; other variables I could look at, like arbtt window-tracking of how I spend my computer time, # or size of edits to my files, or spaced repetition performance, would be harder to manipulate. If it’s all due to MP, then if I remove the MP and LLLT variables, and summarize all the other variables with factor analysis into 2 or 3 variables, then I should see no increases in them when I put LLLT back in and look for a correlation between the factors & LLLT with a multivariate regression.
My worry about the MP variable is that, plausible or not, it does seem relatively weak against manipulation; other variables I could look at, like arbtt window-tracking of how I spend my computer time, # or size of edits to my files, or spaced repetition performance, would be harder to manipulate. If it’s all due to MP, then if I remove the MP and LLLT variables, and summarize all the other variables with factor analysis into 2 or 3 variables, then I should see no increases in them when I put LLLT back in and look for a correlation between the factors & LLLT with a multivariate regression.
Smart drug, also called nootropic or cognitive enhancer, any of a group of pharmaceutical agents used to improve the intellectual capacity of persons suffering from neurological diseases and psychological disorders. The use of such drugs by healthy individuals in order to improve concentration, to study longer, and to better manage stress is a subject of controversy.
Remembering what Wedrifid told me, I decided to start with a quarter of a piece (~1mg). The gum was pretty tasteless, which ought to make blinding easier. The effects were noticeable around 10 minutes - greater energy verging on jitteriness, much faster typing, and apparent general quickening of thought. Like a more pleasant caffeine. While testing my typing speed in Amphetype, my speed seemed to go up >=5 WPM, even after the time penalties for correcting the increased mistakes; I also did twice the usual number without feeling especially tired. A second dose was similar, and the third dose was at 10 PM before playing Ninja Gaiden II seemed to stop the usual exhaustion I feel after playing through a level or so. (It’s a tough game, which I have yet to master like Ninja Gaiden Black.) Returning to the previous concern about sleep problems, though I went to bed at 11:45 PM, it still took 28 minutes to fall sleep (compared to my more usual 10-20 minute range); the next day I use 2mg from 7-8PM while driving, going to bed at midnight, where my sleep latency is a more reasonable 14 minutes. I then skipped for 3 days to see whether any cravings would pop up (they didn’t). I subsequently used 1mg every few days for driving or Ninja Gaiden II, and while there were no cravings or other side-effects, the stimulation definitely seemed to get weaker - benefits seemed to still exist, but I could no longer describe any considerable energy or jitteriness.
While the commentary makes effective arguments — that this isn't cheating, because cheating is based on what the rules are; that this is fair, because hiring a tutor isn't outlawed for being unfair to those who can't afford it; that this isn't unnatural, because humans with computers and antibiotics have been shaping what is natural for millennia; that this isn't drug abuse anymore than taking multivitamins is — the authors seem divorced from reality in the examples they provide of effective stimulant use today.

The majority of smart pills target a limited number of cognitive functions, which is why a group of experts gathered to discover a formula which will empower the entire brain and satisfy the needs of students, athletes, and professionals. Mind Lab Pro® combines 11 natural nootropics to affect all 4 areas of mental performance, unlocking the full potential of your brain. Its carefully designed formula will provide an instant boost, while also delivering long-term benefits.

Capsule Connection sells 1000 00 pills (the largest pills) for $9. I already have a pill machine, so that doesn’t count (a sunk cost). If we sum the grams per day column from the first table, we get 9.75 grams a day. Each 00 pill can take around 0.75 grams, so we need 13 pills. (Creatine is very bulky, alas.) 13 pills per day for 1000 days is 13,000 pills, and 1,000 pills is $9 so we need 13 units and 13 times 9 is $117.
NGF may sound intriguing, but the price is a dealbreaker: at suggested doses of 1-100μg (NGF dosing in humans for benefits is, shall we say, not an exact science), and a cost from sketchy suppliers of $1210/100μg/$470/500μg/$750/1000μg/$1000/1000μg/$1030/1000μg/$235/20μg. (Levi-Montalcini was presumably able to divert some of her lab’s production.) A year’s supply then would be comically expensive: at the lowest doses of 1-10μg using the cheapest sellers (for something one is dumping into one’s eyes?), it could cost anywhere up to $10,000.
Do note that this isn’t an extensive list by any means, there are plenty more ‘smart drugs’ out there purported to help focus and concentration. Most (if not all) are restricted under the Psychoactive Substances Act, meaning they’re largely illegal to sell. We strongly recommend against using these products off-label, as they can be dangerous both due to side effects and their lack of regulation on the grey/black market.
To make things more interesting, I think I would like to try randomizing different dosages as well: 12mg, 24mg, and 36mg (1-3 pills); on 5 May 2014, because I wanted to finish up the experiment earlier, I decided to add 2 larger doses of 48 & 60mg (4-5 pills) as options. Then I can include the previous pilot study as 10mg doses, and regress over dose amount.

The smart pill that FDA approved is called Abilify MyCite. This tiny pill has a drug and an ingestible sensor. The sensor gets activated when it comes into contact with stomach fluid to detect when the pill has been taken. The data is then transmitted to a wearable patch that eventually conveys the information to a paired smartphone app. Doctors and caregivers, with the patient’s consent, can then access the data via a web portal.
Four of the studies focused on middle and high school students, with varied results. Boyd, McCabe, Cranford, and Young (2006) found a 2.3% lifetime prevalence of nonmedical stimulant use in their sample, and McCabe, Teter, and Boyd (2004) found a 4.1% lifetime prevalence in public school students from a single American public school district. Poulin (2001) found an 8.5% past-year prevalence in public school students from four provinces in the Atlantic region of Canada. A more recent study of the same provinces found a 6.6% and 8.7% past-year prevalence for MPH and AMP use, respectively (Poulin, 2007).
The experiment then is straightforward: cut up a fresh piece of gum, randomly select from it and an equivalent dry piece of gum, and do 5 rounds of dual n-back to test attention/energy & WM. (If it turns out to be placebo, I’ll immediately use the remaining active dose: no sense in wasting gum, and this will test whether nigh-daily use renders nicotine gum useless, similar to how caffeine may be useless if taken daily. If there’s 3 pieces of active gum left, then I wrap it very tightly in Saran wrap which is sticky and air-tight.) The dose will be 1mg or 1/4 a gum. I cut up a dozen pieces into 4 pieces for 48 doses and set them out to dry. Per the previous power analyses, 48 groups of DNB rounds likely will be enough for detecting small-medium effects (partly since we will be only looking at one metric - average % right per 5 rounds - with no need for multiple correction). Analysis will be one-tailed, since we’re looking for whether there is a clear performance improvement and hence a reason to keep using nicotine gum (rather than whether nicotine gum might be harmful).
The main concern with pharmaceutical drugs is adverse effects, which also apply to nootropics with undefined effects. Long-term safety evidence is typically unavailable for nootropics.[13] Racetams — piracetam and other compounds that are structurally related to piracetam — have few serious adverse effects and low toxicity, but there is little evidence that they enhance cognition in people having no cognitive impairments.[19]