A quick search for drugs that make you smarter will lead you to the discovery of piracetam. Piracetam is the first synthetic smart drug of its kind. All other racetams derive from Piracetam. Some are far more potent, but they may also carry more side effects. Piracetam is an allosteric modulator of acetylcholine receptors. In other words, it enhances acetylcholine synthesis which boosts cognitive function.
Historically used to help people with epilepsy, piracetam is used in some cases of myoclonus, or muscle twitching. Its actual mechanism of action is unclear: It doesn’t act exactly as a sedative or stimulant, but still influences cognitive function, and is believed to act on receptors for acetylcholine in the brain. Piracetam is used off-label as a 'smart drug' to help focus and concentration or sometimes as a way to allegedly boost your mood. Again, piracetam is a prescription-only drug - any supply to people without a prescription is illegal, and supplying it may result in a fine or prison sentence.
Similar to the way in which some athletes used anabolic steroids (muscle-building hormones) to artificially enhance their physique, some students turned to smart drugs, particularly Ritalin and Adderall, to heighten their intellectual abilities. A 2005 study reported that, at some universities in the United States, as many as 7 percent of respondents had used smart drugs at least once in their lifetime and 2.1 percent had used smart drugs in the past month. Modafinil was used increasingly by persons who sought to recover quickly from jet lag and who were under heavy work demands. Military personnel were given the same drug when sent on missions with extended flight times.
We reviewed recent studies concerning prescription stimulant use specifically among students in the United States and Canada, using the method illustrated in Figure 1. Although less informative about the general population, these studies included questions about students’ specific reasons for using the drugs, as well as frequency of use and means of obtaining them. These studies typically found rates of use greater than those reported by the nationwide NSDUH or the MTF surveys. This probably reflects a true difference in rates of usage among the different populations. In support of that conclusion, the NSDUH data for college age Americans showed that college students were considerably more likely than nonstudents of the same age to use prescription stimulants nonmedically (odds ratio: 2.76; Herman-Stahl, Krebs, Kroutil, & Heller, 2007).
The principal metric would be mood, however defined. Zeo’s web interface & data export includes a field for Day Feel, which is a rating 1-5 of general mood & quality of day. I can record a similar metric at the end of each day. 1-5 might be a little crude even with a year of data, so a more sophisticated measure might be in order. The first mood study is paywalled so I’m not sure what they used, but Shiotsuki 2008 used State-Trait of Anxiety Inventory (STAI) and Profiles of Mood States Test (POMS). The full POMS sounds too long to use daily, but the Brief POMS might work. In the original 1987 paper A brief POMS measure of distress for cancer patients, patients answering this questionnaire had a mean total mean of 10.43 (standard deviation 8.87). Is this the best way to measure mood? I’ve asked Seth Roberts; he suggested using a 0-100 scale, but personally, there’s no way I can assess my mood on 0-100. My mood is sufficiently stable (to me) that 0-5 is asking a bit much, even.
As professionals and aging baby boomers alike become more interested in enhancing their own brain power (either to achieve more in a workday or to stave off cognitive decline), a huge market has sprung up for nonprescription nootropic supplements. These products don’t convince Sahakian: “As a clinician scientist, I am interested in evidence-based cognitive enhancement,” she says. “Many companies produce supplements, but few, if any, have double-blind, placebo-controlled studies to show that these supplements are cognitive enhancers.” Plus, supplements aren’t regulated by the U.S. Food and Drug Administration (FDA), so consumers don’t have that assurance as to exactly what they are getting. Check out these 15 memory exercises proven to keep your brain sharp.

One thing to notice is that the default case matters a lot. This asymmetry is because you switch decisions in different possible worlds - when you would take Adderall but stop you’re in the world where Adderall doesn’t work, and when you wouldn’t take Adderall but do you’re in the world where Adderall does work (in the perfect information case, at least). One of the ways you can visualize this is that you don’t penalize tests for giving you true negative information, and you reward them for giving you true positive information. (This might be worth a post by itself, and is very Litany of Gendlin.)

Most people would describe school as a place where they go to learn, so learning is an especially relevant cognitive process for students to enhance. Even outside of school, however, learning plays a role in most activities, and the ability to enhance the retention of information would be of value in many different occupational and recreational contexts.

The data from 2-back and 3-back tasks are more complex. Three studies examined performance in these more challenging tasks and found no effect of d-AMP on average performance (Mattay et al., 2000, 2003; Mintzer & Griffiths, 2007). However, in at least two of the studies, the overall null result reflected a mixture of reliably enhancing and impairing effects. Mattay et al. (2000) examined the performance of subjects with better and worse working memory capacity separately and found that subjects whose performance on placebo was low performed better on d-AMP, whereas subjects whose performance on placebo was high were unaffected by d-AMP on the 2-back and impaired on the 3-back tasks. Mattay et al. (2003) replicated this general pattern of data with subjects divided according to genotype. The specific gene of interest codes for the production of Catechol-O-methyltransferase (COMT), an enzyme that breaks down dopamine and norepinephrine. A common polymorphism determines the activity of the enzyme, with a substitution of methionine for valine at Codon 158 resulting in a less active form of COMT. The met allele is thus associated with less breakdown of dopamine and hence higher levels of synaptic dopamine than the val allele. Mattay et al. (2003) found that subjects who were homozygous for the val allele were able to perform the n-back faster with d-AMP; those homozygous for met were not helped by the drug and became significantly less accurate in the 3-back condition with d-AMP. In the case of the third study finding no overall effect, analyses of individual differences were not reported (Mintzer & Griffiths, 2007).
In addition, while the laboratory research reviewed here is of interest concerning the effects of stimulant drugs on specific cognitive processes, it does not tell us about the effects on cognition in the real world. How do these drugs affect academic performance when used by students? How do they affect the total knowledge and understanding that students take with them from a course? How do they affect various aspects of occupational performance? Similar questions have been addressed in relation to students and workers with ADHD (Barbaresi, Katusic, Colligan, Weaver, & Jacobsen, 2007; Halmøy, Fasmer, Gillberg, & Haavik, 2009; see also Advokat, 2010) but have yet to be addressed in the context of cognitive enhancement of normal individuals.
Specifically, the film is completely unintelligible if you had not read the book. The best I can say for it is that it delivers the action and events one expects in the right order and with basic competence, but its artistic merits are few. It seems generally devoid of the imagination and visual flights of fancy that animated movies 1 and 3 especially (although Mike Darwin disagrees), copping out on standard imagery like a Star Wars-style force field over Hogwarts Castle, or luminescent white fog when Harry was dead and in his head; I was deeply disappointed to not see any sights that struck me as novel and new. (For example, the aforementioned dead scene could have been done in so many interesting ways, like why not show Harry & Dumbledore in a bustling King’s Cross shot in bright sharp detail, but with not a single person in sight and all the luggage and equipment animatedly moving purposefully on their own?) The ending in particular boggles me. I actually turned to the person next to me and asked them whether that really was the climax and Voldemort was dead, his death was so little dwelt upon or laden with significance (despite a musical score that beat you over the head about everything else). In the book, I remember it feeling like a climactic scene, with everyone watching and little speeches explaining why Voldemort was about to be defeated, and a suitable victory celebration; I read in the paper the next day a quote from the director or screenwriter who said one scene was cut because Voldemort would not talk but simply try to efficiently kill Harry. (This is presumably the explanation for the incredible anti-climax. Hopefully.) I was dumbfounded by the depths of dishonesty or delusion or disregard: Voldemort not only does that in Deathly Hallows multiple times, he does it every time he deals with Harry, exactly as the classic villains (he is numbered among) always do! How was it possible for this man to read the books many times, as he must have, and still say such a thing?↩
The use of prescription stimulants is especially prevalent among students.[9] Surveys suggest that 0.7–4.5% of German students have used cognitive enhancers in their lifetimes.[10][11][12] Stimulants such as dimethylamylamine and methylphenidate are used on college campuses and by younger groups.[13] Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily used for enhancement of academic performance rather than as recreational drugs.[14][15][16] Several factors positively and negatively influence an individual's willingness to use a drug for the purpose of enhancing cognitive performance. Among them are personal characteristics, drug characteristics, and characteristics of the social context.[10][11][17][18]