Vinh Ngo, a San Francisco family practice doctor who specializes in hormone therapy, has become familiar with piracetam and other nootropics through a changing patient base. His office is located in the heart of the city’s tech boom and he is increasingly sought out by young, male tech workers who tell him they are interested in cognitive enhancement.

Stimulants are drugs that accelerate the central nervous system (CNS) activity. They have the power to make us feel more awake, alert and focused, providing us with a needed energy boost. Unfortunately, this class encompasses a wide range of drugs, some which are known solely for their side-effects and addictive properties. This is the reason why many steer away from any stimulants, when in fact some greatly benefit our cognitive functioning and can help treat some brain-related impairments and health issues.


Eugeroics (armodafinil and modafinil) – are classified as "wakefulness promoting" agents; modafinil increased alertness, particularly in sleep deprived individuals, and was noted to facilitate reasoning and problem solving in non-ADHD youth.[23] In a systematic review of small, preliminary studies where the effects of modafinil were examined, when simple psychometric assessments were considered, modafinil intake appeared to enhance executive function.[27] Modafinil does not produce improvements in mood or motivation in sleep deprived or non-sleep deprived individuals.[28]
Barbaresi WJ, Katusic SK, Colligan RC, Weaver AL, Jacobsen SJ. Modifiers of long-term school outcomes for children with attention-deficit/hyperactivity disorder: Does treatment with stimulant medication make a difference? Results from a population-based study. Journal of Developmental and Behavioral Pediatrics. 2007;28:274–287. doi: 10.1097/DBP.0b013e3180cabc28. [PubMed] [CrossRef]
The search to find more effective drugs to increase mental ability and intelligence capacity with neither toxicity nor serious side effects continues. But there are limitations. Although the ingredients may be separately known to have cognition-enhancing effects, randomized controlled trials of the combined effects of cognitive enhancement compounds are sparse.
Actually, researchers are studying substances that may improve mental abilities. These substances are called "cognitive enhancers" or "smart drugs" or "nootropics." ("Nootropic" comes from Greek - "noos" = mind and "tropos" = changed, toward, turn). The supposed effects of cognitive enhancement can be several things. For example, it could mean improvement of memory, learning, attention, concentration, problem solving, reasoning, social skills, decision making and planning.
Taken together, the available results are mixed, with slightly more null results than overall positive findings of enhancement and evidence of impairment in one reversal learning task. As the effect sizes listed in Table 5 show, the effects when found are generally substantial. When drug effects were assessed as a function of placebo performance, genotype, or self-reported impulsivity, enhancement was found to be greatest for participants who performed most poorly on placebo, had a COMT genotype associated with poorer executive function, or reported being impulsive in their everyday lives. In sum, the effects of stimulants on cognitive control are not robust, but MPH and d-AMP appear to enhance cognitive control in some tasks for some people, especially those less likely to perform well on cognitive control tasks.
(People aged <=18 shouldn’t be using any of this except harmless stuff - where one may have nutritional deficits - like fish oil & vitamin D; melatonin may be especially useful, thanks to the effects of screwed-up school schedules & electronics use on teenagers’ sleep. Changes in effects with age are real - amphetamines’ stimulant effects and modafinil’s histamine-like side-effects come to mind as examples.)
“Cavin’s enthusiasm and drive to help those who need it is unparalleled! He delivers the information in an easy to read manner, no PhD required from the reader. 🙂 Having lived through such trauma himself he has real empathy for other survivors and it shows in the writing. This is a great read for anyone who wants to increase the health of their brain, injury or otherwise! Read it!!!”
The stop-signal task has been used in a number of laboratories to study the effects of stimulants on cognitive control. In this task, subjects are instructed to respond as quickly as possible by button press to target stimuli except on certain trials, when the target is followed by a stop signal. On those trials, they must try to avoid responding. The stop signal can follow the target stimulus almost immediately, in which case it is fairly easy for subjects to cancel their response, or it can come later, in which case subjects may fail to inhibit their response. The main dependent measure for stop-signal task performance is the stop time, which is the average go reaction time minus the interval between the target and stop signal at which subjects inhibit 50% of their responses. De Wit and colleagues have published two studies of the effects of d-AMP on this task. De Wit, Crean, and Richards (2000) reported no significant effect of the drug on stop time for their subjects overall but a significant effect on the half of the subjects who were slowest in stopping on the baseline trials. De Wit et al. (2002) found an overall improvement in stop time in addition to replicating their earlier finding that this was primarily the result of enhancement for the subjects who were initially the slowest stoppers. In contrast, Filmore, Kelly, and Martin (2005) used a different measure of cognitive control in this task, simply the number of failures to stop, and reported no effects of d-AMP.
While the mechanism is largely unknown, one commonly mechanism possibility is that light of the relevant wavelengths is preferentially absorbed by the protein cytochrome c oxidase, which is a key protein in mitochondrial metabolism and production of ATP, substantially increasing output, and this extra output presumably can be useful for cellular activities like healing or higher performance.
There are certain risks associated with smart pills that might restrain their use. A smart pill usually leaves the body within two weeks. Sometimes, the pill might get lodged in the digestive tract rather than exiting the body via normal bowel movements. The risk might be higher in people with a tumor, Crohns disease, or some surgery within that area that lead to narrowing of the digestive tract. CT scan is usually performed in people with high-risk to assess the narrowing of the tract. However, the pill might still be lodged even if the results are negative for the CT scan, which might lead to bowel obstruction and can be removed either by surgery or traditional endoscopy. Smart pills might lead to skin irritation, which results in mild redness and need to be treated topically. It may also lead to capsule aspiration, which involves the capsule going down the wrong pipe and entering the airway instead of the esophagus. This might result in choking and death if immediate bronchoscopic extraction is not performed. Patients with comorbidities related to brain injury or chronic obstructive pulmonary disease may be at a higher risk. So, the health risks associated with the use of smart pills are hindering the smart pills technology market. The other factors, such as increasing cost with technological advancement and ethical constraints are also hindering the market.
Panax ginseng – A review by the Cochrane Collaboration concluded that "there is a lack of convincing evidence to show a cognitive enhancing effect of Panax ginseng in healthy participants and no high quality evidence about its efficacy in patients with dementia."[36] According to the National Center for Complementary and Integrative Health, "[a]lthough Asian ginseng has been widely studied for a variety of uses, research results to date do not conclusively support health claims associated with the herb."[37]
×