Nicotine absorption through the stomach is variable and relatively reduced in comparison with absorption via the buccal cavity and the small intestine. Drinking, eating, and swallowing of tobacco smoke by South American Indians have frequently been reported. Tenetehara shamans reach a state of tobacco narcosis through large swallows of smoke, and Tapirape shams are said to eat smoke by forcing down large gulps of smoke only to expel it again in a rapid sequence of belches. In general, swallowing of tobacco smoke is quite frequently likened to drinking. However, although the amounts of nicotine swallowed in this way - or in the form of saturated saliva or pipe juice - may be large enough to be behaviorally significant at normal levels of gastric pH, nicotine, like other weak bases, is not significantly absorbed.
A related task is the B–X version of the CPT, in which subjects must respond when an X appears only if it was preceded by a B. As in the 1-back task, the subject must retain the previous trial’s letter in working memory because it determines the subject’s response to the current letter. In this case, when the current letter is an X, then the subject should respond only if the previous letter was a B. Two studies examined stimulant effects in this task. Rapoport et al. (1980) found that d-AMP reduced errors of omission in the longer of two test sessions, and Klorman et al. (1984) found that MPH reduced errors of omission and response time.
 In most cases, cognitive enhancers have been used to treat people with neurological or mental disorders, but there is a growing number of healthy, "normal" people who use these substances in hopes of getting smarter. Although there are many companies that make "smart" drinks, smart power bars and diet supplements containing certain "smart" chemicals, there is little evidence to suggest that these products really work. Results from different laboratories show mixed results; some labs show positive effects on memory and learning; other labs show no effects. There are very few well-designed studies using normal healthy people.

Productivity is the most cited reason for using nootropics. With all else being equal, smart drugs are expected to give you that mental edge over other and advance your career. Nootropics can also be used for a host of other reasons. From studying to socialising. And from exercise and health to general well-being. Different nootropics cater to different audiences.

The surveys just reviewed indicate that many healthy, normal students use prescription stimulants to enhance their cognitive performance, based in part on the belief that stimulants enhance cognitive abilities such as attention and memorization. Of course, it is possible that these users are mistaken. One possibility is that the perceived cognitive benefits are placebo effects. Another is that the drugs alter students’ perceptions of the amount or quality of work accomplished, rather than affecting the work itself (Hurst, Weidner, & Radlow, 1967). A third possibility is that stimulants enhance energy, wakefulness, or motivation, which improves the quality and quantity of work that students can produce with a given, unchanged, level of cognitive ability. To determine whether these drugs enhance cognition in normal individuals, their effects on cognitive task performance must be assessed in relation to placebo in a masked study design.
Table 5 lists the results of 16 tasks from 13 articles on the effects of d-AMP or MPH on cognitive control. One of the simplest tasks used to study cognitive control is the go/no-go task. Subjects are instructed to press a button as quickly as possible for one stimulus or class of stimuli (go) and to refrain from pressing for another stimulus or class of stimuli (no go). De Wit et al. (2002) used a version of this task to measure the effects of d-AMP on subjects’ ability to inhibit a response and found enhancement in the form of decreased false alarms (responses to no-go stimuli) and increased speed of correct go responses. They also found that subjects who made the most errors on placebo experienced the greatest enhancement from the drug.
The placebos can be the usual pills filled with olive oil. The Nature’s Answer fish oil is lemon-flavored; it may be worth mixing in some lemon juice. In Kiecolt-Glaser et al 2011, anxiety was measured via the Beck Anxiety scale; the placebo mean was 1.2 on a standard deviation of 0.075, and the experimental mean was 0.93 on a standard deviation of 0.076. (These are all log-transformed covariates or something; I don’t know what that means, but if I naively plug those numbers into Cohen’s d, I get a very large effect: \frac{1.2 - 0.93}{0.076}=3.55.)

The Nature commentary is ivory tower intellectualism at its best. The authors state that society must prepare for the growing demand of such drugs; that healthy adults should be allowed drugs to enhance cognitive ability; that this is "morally equivalent" and no more unnatural than diet, sleep, or the use of computers; that we need an evidence-based approach to evaluate the risks; and that we need legal and ethical policies to ensure fair and equitable use.
The goal of this article has been to synthesize what is known about the use of prescription stimulants for cognitive enhancement and what is known about the cognitive effects of these drugs. We have eschewed discussion of ethical issues in favor of simply trying to get the facts straight. Although ethical issues cannot be decided on the basis of facts alone, neither can they be decided without relevant facts. Personal and societal values will dictate whether success through sheer effort is as good as success with pharmacologic help, whether the freedom to alter one’s own brain chemistry is more important than the right to compete on a level playing field at school and work, and how much risk of dependence is too much risk. Yet these positions cannot be translated into ethical decisions in the real world without considerable empirical knowledge. Do the drugs actually improve cognition? Under what circumstances and for whom? Who will be using them and for what purposes? What are the mental and physical health risks for frequent cognitive-enhancement users? For occasional users?
The evidence? A 2012 study in Greece found it can boost cognitive function in adults with mild cognitive impairment (MCI), a type of disorder marked by forgetfulness and problems with language, judgement, or planning that are more severe than average “senior moments,” but are not serious enough to be diagnosed as dementia. In some people, MCI will progress into dementia.
Some supplement blends, meanwhile, claim to work by combining ingredients – bacopa, cat's claw, huperzia serrata and oat straw in the case of Alpha Brain, for example – that have some support for boosting cognition and other areas of nervous system health. One 2014 study in Frontiers in Aging Neuroscience, suggested that huperzia serrata, which is used in China to fight Alzheimer's disease, may help slow cell death and protect against (or slow the progression of) neurodegenerative diseases. The Alpha Brain product itself has also been studied in a company-funded small randomized controlled trial, which found Alpha Brain significantly improved verbal memory when compared to adults who took a placebo.

Omega-3 fatty acids: DHA and EPA – two Cochrane Collaboration reviews on the use of supplemental omega-3 fatty acids for ADHD and learning disorders conclude that there is limited evidence of treatment benefits for either disorder.[42][43] Two other systematic reviews noted no cognition-enhancing effects in the general population or middle-aged and older adults.[44][45]