But when aficionados talk about nootropics, they usually refer to substances that have supposedly few side effects and low toxicity. Most often they mean piracetam, which Giurgea first synthesized in 1964 and which is approved for therapeutic use in dozens of countries for use in adults and the elderly. Not so in the United States, however, where officially it can be sold only for research purposes.
Tyrosine (Examine.com) is an amino acid; people on the Imminst.org forums (as well as Wikipedia) suggest that it helps with energy and coping with stress. I ordered 4oz (bought from Smart Powders) to try it out, and I began taking 1g with my usual caffeine+piracetam+choline mix. It does not dissolve easily in hot water, and is very chalky and not especially tasty. I have not noticed any particular effects from it.
Adaptogens are plant-derived chemicals whose activity helps the body maintain or regain homeostasis (equilibrium between the body’s metabolic processes). Almost without exception, adaptogens are available over-the-counter as dietary supplements, not controlled drugs. Well-known adaptogens include Ginseng, Kava Kava, Passion Flower, St. Johns Wort, and Gotu Kola. Many of these traditional remedies border on being “folk wisdom,” and have been in use for hundreds or thousands of years, and are used to treat everything from anxiety and mild depression to low libido. While these smart drugs work in a many different ways (their commonality is their resultant function within the body, not their chemical makeup), it can generally be said that the cognitive boost users receive is mostly a result of fixing an imbalance in people with poor diets, body toxicity, or other metabolic problems, rather than directly promoting the growth of new brain cells or neural connections.
My answer is that this is not a lot of research or very good research (not nearly as good as the research on nicotine, eg.), and assuming it’s true, I don’t value long-term memory that much because LTM is something that is easily assisted or replaced (personal archives, and spaced repetition). For me, my problems tend to be more about akrasia and energy and not getting things done, so even if a stimulant comes with a little cost to long-term memory, it’s still useful for me. I’m going continue to use the caffeine. It’s not so bad in conjunction with tea, is very cheap, and I’m already addicted, so why not? Caffeine is extremely cheap, addictive, has minimal effects on health (and may be beneficial, from the various epidemiological associations with tea/coffee/chocolate & longevity), and costs extra to remove from drinks popular regardless of their caffeine content (coffee and tea again). What would be the point of carefully investigating it? Suppose there was conclusive evidence on the topic, the value of this evidence to me would be roughly $0 or since ignorance is bliss, negative money - because unless the negative effects were drastic (which current studies rule out, although tea has other issues like fluoride or metal contents), I would not change anything about my life. Why? I enjoy my tea too much. My usual tea seller doesn’t even have decaffeinated oolong in general, much less various varieties I might want to drink, apparently because de-caffeinating is so expensive it’s not worthwhile. What am I supposed to do, give up my tea and caffeine just to save on the cost of caffeine? Buy de-caffeinating machines (which I couldn’t even find any prices for, googling)? This also holds true for people who drink coffee or caffeinated soda. (As opposed to a drug like modafinil which is expensive, and so the value of a definitive answer is substantial and would justify some more extensive calculating of cost-benefit.)
Sleep itself is an underrated cognition enhancer. It is involved in enhancing long-term memories as well as creativity. For instance, it is well established that during sleep memories are consolidated-a process that "fixes" newly formed memories and determines how they are shaped. Indeed, not only does lack of sleep make most of us moody and low on energy, cutting back on those precious hours also greatly impairs cognitive performance. Exercise and eating well also enhance aspects of cognition. It turns out that both drugs and "natural" enhancers produce similar physiological changes in the brain, including increased blood flow and neuronal growth in structures such as the hippocampus. Thus, cognition enhancers should be welcomed but not at the expense of our health and well being.
The Nature commentary is ivory tower intellectualism at its best. The authors state that society must prepare for the growing demand of such drugs; that healthy adults should be allowed drugs to enhance cognitive ability; that this is "morally equivalent" and no more unnatural than diet, sleep, or the use of computers; that we need an evidence-based approach to evaluate the risks; and that we need legal and ethical policies to ensure fair and equitable use.

“Smart Drugs” are chemical substances that enhance cognition and memory or facilitate learning. However, within this general umbrella of “things you can eat that make you smarter,” there are many variations as far as methods of action within the body, perceptible (and measurable) effects, potential for use and abuse, and the spillover impact on the body’s non-cognitive processes.

Nicotine absorption through the stomach is variable and relatively reduced in comparison with absorption via the buccal cavity and the small intestine. Drinking, eating, and swallowing of tobacco smoke by South American Indians have frequently been reported. Tenetehara shamans reach a state of tobacco narcosis through large swallows of smoke, and Tapirape shams are said to eat smoke by forcing down large gulps of smoke only to expel it again in a rapid sequence of belches. In general, swallowing of tobacco smoke is quite frequently likened to drinking. However, although the amounts of nicotine swallowed in this way - or in the form of saturated saliva or pipe juice - may be large enough to be behaviorally significant at normal levels of gastric pH, nicotine, like other weak bases, is not significantly absorbed.
…The Fate of Nicotine in the Body also describes Battelle’s animal work on nicotine absorption. Using C14-labeled nicotine in rabbits, the Battelle scientists compared gastric absorption with pulmonary absorption. Gastric absorption was slow, and first pass removal of nicotine by the liver (which transforms nicotine into inactive metabolites) was demonstrated following gastric administration, with consequently low systemic nicotine levels. In contrast, absorption from the lungs was rapid and led to widespread distribution. These results show that nicotine absorbed from the stomach is largely metabolized by the liver before it has a chance to get to the brain. That is why tobacco products have to be puffed, smoked or sucked on, or absorbed directly into the bloodstream (i.e., via a nicotine patch). A nicotine pill would not work because the nicotine would be inactivated before it reached the brain.

There are also premade ‘stacks’ (or formulas) of cognitive enhancing superfoods, herbals or proteins, which pre-package several beneficial extracts for a greater impact. These types of cognitive enhancers are more ‘subtle’ than the pharmaceutical alternative with regards to effects, but they work all the same. In fact, for many people, they work better than smart drugs as they are gentler on the brain and produce fewer side-effects.
This article is for informational purposes only and does not constitute medical advice. Quartz does not recommend or endorse any specific products, studies, opinions, or other information mentioned in this article. This article is not intended to be used for, or as a substitute for, professional medical advice, diagnosis, or treatment. Always seek the advice of a physician or other qualified health provider with any questions you may have before starting any new treatment or discontinuing any existing treatment.Reliance on any information provided in this article or by Quartz is solely at your own risk.
The use of prescription stimulants is especially prevalent among students.[9] Surveys suggest that 0.7–4.5% of German students have used cognitive enhancers in their lifetimes.[10][11][12] Stimulants such as dimethylamylamine and methylphenidate are used on college campuses and by younger groups.[13] Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily used for enhancement of academic performance rather than as recreational drugs.[14][15][16] Several factors positively and negatively influence an individual's willingness to use a drug for the purpose of enhancing cognitive performance. Among them are personal characteristics, drug characteristics, and characteristics of the social context.[10][11][17][18]