When you drink tea, you’re getting some caffeine (less than the amount in coffee), plus an amino acid called L-theanine that has been shown in studies to increase activity in the brain’s alpha frequency band, which can lead to relaxation without drowsiness. These calming-but-stimulating effects might contribute to tea’s status as the most popular beverage aside from water. People have been drinking it for more than 4,000 years, after all, but modern brain hackers try to distill and enhance the benefits by taking just L-theanine as a nootropic supplement. Unfortunately, that means they’re missing out on the other health effects that tea offers. It’s packed with flavonoids, which are associated with longevity, reduced inflammation, weight loss, cardiovascular health, and cancer prevention.


But there are some potential side effects, including headaches, anxiety and insomnia. Part of the way modafinil works is by shifting the brain’s levels of norepinephrine, dopamine, serotonin and other neurotransmitters; it’s not clear what effects these shifts may have on a person’s health in the long run, and some research on young people who use modafinil has found changes in brain plasticity that are associated with poorer cognitive function.

Sarter is downbeat, however, about the likelihood of the pharmaceutical industry actually turning candidate smart drugs into products. Its interest in cognitive enhancers is shrinking, he says, “because these drugs are not working for the big indications, which is the market that drives these developments. Even adult ADHD has not been considered a sufficiently attractive large market.”


Another interpretation of the mixed results in the literature is that, in some cases at least, individual differences in response to stimulants have led to null results when some participants in the sample are in fact enhanced and others are not. This possibility is not inconsistent with the previously mentioned ones; both could be at work. Evidence has already been reviewed that ability level, personality, and COMT genotype modulate the effect of stimulants, although most studies in the literature have not broken their samples down along these dimensions. There may well be other as-yet-unexamined individual characteristics that determine drug response. The equivocal nature of the current literature may reflect a mixture of substantial cognitive-enhancement effects for some individuals, diluted by null effects or even counteracted by impairment in others.
One idea I’ve been musing about is the connections between IQ, Conscientiousness, and testosterone. IQ and Conscientiousness do not correlate to a remarkable degree - even though one would expect IQ to at least somewhat enable a long-term perspective, self-discipline, metacognition, etc! There are indications in studies of gifted youth that they have lower testosterone levels. The studies I’ve read on testosterone indicate no improvements to raw ability. So, could there be a self-sabotaging aspect to human intelligence whereby greater intelligence depends on lack of testosterone, but this same lack also holds back Conscientiousness (despite one’s expectation that intelligence would produce greater self-discipline and planning), undermining the utility of greater intelligence? Could cases of high IQ types who suddenly stop slacking and accomplish great things sometimes be due to changes in testosterone? Studies on the correlations between IQ, testosterone, Conscientiousness, and various measures of accomplishment are confusing and don’t always support this theory, but it’s an idea to keep in mind.

Low-tech methods of cognitive enhancement include many components of what has traditionally been viewed as a healthy lifestyle, such as exercise, good nutrition, adequate sleep, and stress management. These low-tech methods nevertheless belong in a discussion of brain enhancement because, in addition to benefiting cognitive performance, their effects on brain function have been demonstrated (Almeida et al., 2002; Boonstra, Stins, Daffertshofer, & Beek, 2007; Hillman, Erickson, & Kramer, 2008; Lutz, Slagter, Dunne, & Davidson, 2008; Van Dongen, Maislin, Mullington, & Dinges, 2003).


Taken together, these considerations suggest that the cognitive effects of stimulants for any individual in any task will vary based on dosage and will not easily be predicted on the basis of data from other individuals or other tasks. Optimizing the cognitive effects of a stimulant would therefore require, in effect, a search through a high-dimensional space whose dimensions are dose; individual characteristics such as genetic, personality, and ability levels; and task characteristics. The mixed results in the current literature may be due to the lack of systematic optimization.


So what’s the catch? Well, it’s potentially addictive for one. Anything that messes with your dopamine levels can be. And Patel says there are few long-term studies on it yet, so we don’t know how it will affect your brain chemistry down the road, or after prolonged, regular use. Also, you can’t get it very easily, or legally for that matter, if you live in the U.S. It’s classified as a schedule IV controlled substance. That’s where Adrafinil comes in.
So what’s the catch? Well, it’s potentially addictive for one. Anything that messes with your dopamine levels can be. And Patel says there are few long-term studies on it yet, so we don’t know how it will affect your brain chemistry down the road, or after prolonged, regular use. Also, you can’t get it very easily, or legally for that matter, if you live in the U.S. It’s classified as a schedule IV controlled substance. That’s where Adrafinil comes in.
The use of prescription stimulants is especially prevalent among students.[9] Surveys suggest that 0.7–4.5% of German students have used cognitive enhancers in their lifetimes.[10][11][12] Stimulants such as dimethylamylamine and methylphenidate are used on college campuses and by younger groups.[13] Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily used for enhancement of academic performance rather than as recreational drugs.[14][15][16] Several factors positively and negatively influence an individual's willingness to use a drug for the purpose of enhancing cognitive performance. Among them are personal characteristics, drug characteristics, and characteristics of the social context.[10][11][17][18]
×