Table 5 lists the results of 16 tasks from 13 articles on the effects of d-AMP or MPH on cognitive control. One of the simplest tasks used to study cognitive control is the go/no-go task. Subjects are instructed to press a button as quickly as possible for one stimulus or class of stimuli (go) and to refrain from pressing for another stimulus or class of stimuli (no go). De Wit et al. (2002) used a version of this task to measure the effects of d-AMP on subjects’ ability to inhibit a response and found enhancement in the form of decreased false alarms (responses to no-go stimuli) and increased speed of correct go responses. They also found that subjects who made the most errors on placebo experienced the greatest enhancement from the drug.
He used to get his edge from Adderall, but after moving from New Jersey to San Francisco, he says, he couldn’t find a doctor who would write him a prescription. Driven to the Internet, he discovered a world of cognition-enhancing drugs known as nootropics — some prescription, some over-the-counter, others available on a worldwide gray market of private sellers — said to improve memory, attention, creativity and motivation.
Smart pills containing Aniracetam may also improve communication between the brain’s hemispheres. This benefit makes Aniracetam supplements ideal for enhancing creativity and stabilizing mood. But, the anxiolytic effects of Aniracetam may be too potent for some. There are reports of some users who find that it causes them to feel unmotivated or sedated. Though, it may not be an issue if you only seek the anti-stress and anxiety-reducing effects.
A “smart pill” is a drug that increases the cognitive ability of anyone taking it, whether the user is cognitively impaired or normal. The Romanian neuroscientist Corneliu Giurgea is often credited with first proposing, in the 1960s, that smart pills should be developed to increase the intelligence of the general population (see Giurgea, 1984). He is quoted as saying, “Man is not going to wait passively for millions of years before evolution offers him a better brain” (Gazzaniga, 2005, p. 71). In their best-selling book, Smart Drugs and Nutrients, Dean and Morgenthaler (1990) reviewed a large number of substances that have been used by healthy individuals with the goal of increasing cognitive ability. These include synthetic and natural products that affect neurotransmitter levels, neurogenesis, and blood flow to the brain. Although many of these substances have their adherents, none have become widely used. Caffeine and nicotine may be exceptions to this generalization, as one motivation among many for their use is cognitive enhancement (Julien, 2001).

While these two compounds may not be as exciting as a super pill that instantly unlocks the full potential of your brain, they currently have the most science to back them up. And, as Patel explains, they’re both relatively safe for healthy individuals of most ages. Patel explains that a combination of caffeine and L-theanine is the most basic supplement stack (or combined dose) because the L-theanine can help blunt the anxiety and “shakiness” that can come with ingesting too much caffeine.


The truth is that, almost 20 years ago when my brain was failing and I was fat and tired, I did not know to follow this advice. I bought $1000 worth of smart drugs from Europe, took them all at once out of desperation, and got enough cognitive function to save my career and tackle my metabolic problems. With the information we have now, you don’t need to do that. Please learn from my mistakes!

Analgesics Anesthetics General Local Anorectics Anti-ADHD agents Antiaddictives Anticonvulsants Antidementia agents Antidepressants Antimigraine agents Antiparkinson agents Antipsychotics Anxiolytics Depressants Entactogens Entheogens Euphoriants Hallucinogens Psychedelics Dissociatives Deliriants Hypnotics/Sedatives Mood Stabilizers Neuroprotectives Nootropics Neurotoxins Orexigenics Serenics Stimulants Wakefulness-promoting agents


Running low on gum (even using it weekly or less, it still runs out), I decided to try patches. Reading through various discussions, I couldn’t find any clear verdict on what patch brands might be safer (in terms of nicotine evaporation through a cut or edge) than others, so I went with the cheapest Habitrol I could find as a first try of patches (Nicotine Transdermal System Patch, Stop Smoking Aid, 21 mg, Step 1, 14 patches) in May 2013. I am curious to what extent nicotine might improve a long time period like several hours or a whole day, compared to the shorter-acting nicotine gum which feels like it helps for an hour at most and then tapers off (which is very useful in its own right for kicking me into starting something I have been procrastinating on). I have not decided whether to try another self-experiment.

The smart pill that FDA approved is called Abilify MyCite. This tiny pill has a drug and an ingestible sensor. The sensor gets activated when it comes into contact with stomach fluid to detect when the pill has been taken. The data is then transmitted to a wearable patch that eventually conveys the information to a paired smartphone app. Doctors and caregivers, with the patient’s consent, can then access the data via a web portal.


Another empirical question concerns the effects of stimulants on motivation, which can affect academic and occupational performance independent of cognitive ability. Volkow and colleagues (2004) showed that MPH increased participants’ self-rated interest in a relatively dull mathematical task. This is consistent with student reports that prescription stimulants make schoolwork seem more interesting (e.g., DeSantis et al., 2008). To what extent are the motivational effects of prescription stimulants distinct from their cognitive effects, and to what extent might they be more robust to differences in individual traits, dosage, and task? Are the motivational effects of stimulants responsible for their usefulness when taken by normal healthy individuals for cognitive enhancement?
American employers are already squeezing more productivity out of fewer workers, so one wonders whether we might feel pressure to enhance our brainpower pharmaceutically, should the state of the art develop so far. Already, workers may be tempted to seek prescriptions for Provigil, a drug that treats daytime sleepiness. Provigil was originally approved as a treatment for narcolepsy and was subsequently approved for use by people who work swing shifts and suffer from excessive daytime sleepiness.
Or in other words, since the standard deviation of my previous self-ratings is 0.75 (see the Weather and my productivity data), a mean rating increase of >0.39 on the self-rating. This is, unfortunately, implying an extreme shift in my self-assessments (for example, 3s are ~50% of the self-ratings and 4s ~25%; to cause an increase of 0.25 while leaving 2s alone in a sample of 23 days, one would have to push 3s down to ~25% and 4s up to ~47%). So in advance, we can see that the weak plausible effects for Noopept are not going to be detected here at our usual statistical levels with just the sample I have (a more plausible experiment might use 178 pairs over a year, detecting down to d>=0.18). But if the sign is right, it might make Noopept worthwhile to investigate further. And the hardest part of this was just making the pills, so it’s not a waste of effort.
But though it’s relatively new on the scene with ambitious young professionals, creatine has a long history with bodybuilders, who have been taking it for decades to improve their muscle #gains. In the US, sports supplements are a multibillion-dollar industry – and the majority contain creatine. According to a survey conducted by Ipsos Public Affairs last year, 22% of adults said they had taken a sports supplement in the last year. If creatine was going to have a major impact in the workplace, surely we would have seen some signs of this already.
Turning to analyses related specifically to the drugs that are the subject of this article, reanalysis of the 2002 NSDUH data by Kroutil and colleagues (2006) found past-year nonmedical use of stimulants other than methamphetamine by 2% of individuals between the ages of 18 and 25 and by 0.3% of individuals 26 years of age and older. For ADHD medications in particular, these rates were 1.3% and 0.1%, respectively. Finally, Novak, Kroutil, Williams, and Van Brunt (2007) surveyed a sample of over four thousand individuals from the Harris Poll Online Panel and found that 4.3% of those surveyed between the ages of 18 and 25 had used prescription stimulants nonmedically in the past year, compared with only 1.3% between the ages of 26 and 49.
Yet some researchers point out these drugs may not be enhancing cognition directly, but simply improving the user’s state of mind – making work more pleasurable and enhancing focus. “I’m just not seeing the evidence that indicates these are clear cognition enhancers,” says Martin Sarter, a professor at the University of Michigan, who thinks they may be achieving their effects by relieving tiredness and boredom. “What most of these are actually doing is enabling the person who’s taking them to focus,” says Steven Rose, emeritus professor of life sciences at the Open University. “It’s peripheral to the learning process itself.”
Dopaminergics are smart drug substances that affect levels of dopamine within the brain. Dopamine is a major neurotransmitter, responsible for the good feelings and biochemical positive feedback from behaviors for which our biology naturally rewards us: tasty food, sex, positive social relationships, etc. Use of dopaminergic smart drugs promotes attention and alertness by either increasing the efficacy of dopamine within the brain, or inhibiting the enzymes that break dopamine down. Examples of popular dopaminergic smart drug drugs include Yohimbe, selegiline and L-Tyrosine.

I have also tried to get in contact with senior executives who have experience with these drugs (either themselves or in their firms), but without success. I have to wonder: Are they completely unaware of the drugs’ existence? Or are they actively suppressing the issue? For now, companies can ignore the use of smart drugs. And executives can pretend as if these drugs don’t exist in their workplaces. But they can’t do it forever.


Somewhat ironically given the stereotypes, while I was in college I dabbled very little in nootropics, sticking to melatonin and tea. Since then I have come to find nootropics useful, and intellectually interesting: they shed light on issues in philosophy of biology & evolution, argue against naive psychological dualism and for materialism, offer cases in point on the history of technology & civilization or recent psychology theories about addiction & willpower, challenge our understanding of the validity of statistics and psychology - where they don’t offer nifty little problems in statistics and economics themselves, and are excellent fodder for the young Quantified Self movement4; modafinil itself demonstrates the little-known fact that sleep has no accepted evolutionary explanation. (The hard drugs also have more ramifications than one might expect: how can one understand the history of Southeast Asia and the Vietnamese War without reference to heroin, or more contemporaneously, how can one understand the lasting appeal of the Taliban in Afghanistan and the unpopularity & corruption of the central government without reference to the Taliban’s frequent anti-drug campaigns or the drug-funded warlords of the Northern Alliance?)
Now, what is the expected value (EV) of simply taking iodine, without the additional work of the experiment? 4 cans of 0.15mg x 200 is $20 for 2.1 years’ worth or ~$10 a year or a NPV cost of $205 (\frac{10}{\ln 1.05}) versus a 20% chance of $2000 or $400. So the expected value is greater than the NPV cost of taking it, so I should start taking iodine.
That is, perhaps light of the right wavelength can indeed save the brain some energy by making it easier to generate ATP. Would 15 minutes of LLLT create enough ATP to make any meaningful difference, which could possibly cause the claimed benefits? The problem here is like that of the famous blood-glucose theory of willpower - while the brain does indeed use up more glucose while active, high activity uses up very small quantities of glucose/energy which doesn’t seem like enough to justify a mental mechanism like weak willpower.↩

“You know how they say that we can only access 20% of our brain?” says the man who offers stressed-out writer Eddie Morra a fateful pill in the 2011 film Limitless. “Well, what this does, it lets you access all of it.” Morra is instantly transformed into a superhuman by the fictitious drug NZT-48. Granted access to all cognitive areas, he learns to play the piano in three days, finishes writing his book in four, and swiftly makes himself a millionaire.

A fundamental aspect of human evolution has been the drive to augment our capabilities. The neocortex is the neural seat of abstract and higher order cognitive processes. As it grew, so did our ability to create. The invention of tools and weapons, writing, the steam engine, and the computer have exponentially increased our capacity to influence and understand the world around us. These advances are being driven by improved higher-order cognitive processing.1Fascinatingly, the practice of modulating our biology through naturally occurring flora predated all of the above discoveries. Indeed, Sumerian clay slabs as old as 5000 BC detail medicinal recipes which include over 250 plants2. The enhancement of human cognition through natural compounds followed, as people discovered plants containing caffeine, theanine, and other cognition-enhancing, or nootropic, agents.

It was a productive hour, sure. But it also bore a remarkable resemblance to the normal editing process. I had imagined that the magical elixir coursing through my bloodstream would create towering storm clouds in my brain which, upon bursting, would rain cinematic adjectives onto the page as fast my fingers could type them. Unfortunately, the only thing that rained down were Google searches that began with the words "synonym for"—my usual creative process.
Many of the most popular “smart drugs” (Piracetam, Sulbutiamine, Ginkgo Biloba, etc.) have been around for decades or even millenia but are still known only in medical circles or among esoteric practicioners of herbal medicine. Why is this? If these compounds have proven cognitive benefits, why are they not ubiquitous? How come every grade-school child gets fluoride for the development of their teeth (despite fluoride’s being a known neurotoxin) but not, say, Piracetam for the development of their brains? Why does the nightly news slant stories to appeal more to a fear-of-change than the promise of a richer cognitive future?
Iluminal is an example of an over-the-counter serotonergic drug used by people looking for performance enhancement, memory improvements, and mood-brightening. Also noteworthy, a wide class of prescription anti-depression drugs are based on serotonin reuptake inhibitors that slow the absorption of serotonin by the presynaptic cell, increasing the effect of the neurotransmitter on the receptor neuron – essentially facilitating the free flow of serotonin throughout the brain.
Table 4 lists the results of 27 tasks from 23 articles on the effects of d-AMP or MPH on working memory. The oldest and most commonly used type of working memory task in this literature is the Sternberg short-term memory scanning paradigm (Sternberg, 1966), in which subjects hold a set of items (typically letters or numbers) in working memory and are then presented with probe items, to which they must respond “yes” (in the set) or “no” (not in the set). The size of the set, and hence the working memory demand, is sometimes varied, and the set itself may be varied from trial to trial to maximize working memory demands or may remain fixed over a block of trials. Taken together, the studies that have used a version of this task to test the effects of MPH and d-AMP on working memory have found mixed and somewhat ambiguous results. No pattern is apparent concerning the specific version of the task or the specific drug. Four studies found no effect (Callaway, 1983; Kennedy, Odenheimer, Baltzley, Dunlap, & Wood, 1990; Mintzer & Griffiths, 2007; Tipper et al., 2005), three found faster responses with the drugs (Fitzpatrick, Klorman, Brumaghim, & Keefover, 1988; Ward et al., 1997; D. E. Wilson et al., 1971), and one found higher accuracy in some testing sessions at some dosages, but no main effect of drug (Makris et al., 2007). The meaningfulness of the increased speed of responding is uncertain, given that it could reflect speeding of general response processes rather than working memory–related processes. Aspects of the results of two studies suggest that the effects are likely due to processes other than working memory: D. E. Wilson et al. (1971) reported comparable speeding in a simple task without working memory demands, and Tipper et al. (2005) reported comparable speeding across set sizes.

Two variants of the Towers of London task were used by Elliott et al. (1997) to study the effects of MPH on planning. The object of this task is for subjects to move game pieces from one position to another while adhering to rules that constrain the ways in which they can move the pieces, thus requiring subjects to plan their moves several steps ahead. Neither version of the task revealed overall effects of the drug, but one version showed impairment for the group that received the drug first, and the other version showed enhancement for the group that received the placebo first.


Yet some researchers point out these drugs may not be enhancing cognition directly, but simply improving the user’s state of mind – making work more pleasurable and enhancing focus. “I’m just not seeing the evidence that indicates these are clear cognition enhancers,” says Martin Sarter, a professor at the University of Michigan, who thinks they may be achieving their effects by relieving tiredness and boredom. “What most of these are actually doing is enabling the person who’s taking them to focus,” says Steven Rose, emeritus professor of life sciences at the Open University. “It’s peripheral to the learning process itself.”
Increasing incidences of chronic diseases such as diabetes and cancer are also impacting positive growth for the global smart pills market. The above-mentioned factors have increased the need for on-site diagnosis, which can be achieved by smart pills. Moreover, the expanding geriatric population and the resulting increasing in degenerative diseases has increased demand for smart pills
“Cavin Balaster knows brain injury as well as any specialist. He survived a horrific accident and came out on the other side stronger than ever. His book, “How To Feed A Brain” details how changing his diet helped him to recover further from the devastating symptoms of brain injury such as fatigue and brain fog. Cavin is able to thoroughly explain complex issues in a simplified manner so the reader does not need a medical degree to understand. The book also includes comprehensive charts to simplify what the body needs and how to provide the necessary foods. “How To Feed A Brain” is a great resource for anyone looking to improve their health through diet, brain injury not required.”
If stimulants truly enhance cognition but do so to only a small degree, this raises the question of whether small effects are of practical use in the real world. Under some circumstances, the answer would undoubtedly be yes. Success in academic and occupational competitions often hinges on the difference between being at the top or merely near the top. A scholarship or a promotion that can go to only one person will not benefit the runner-up at all. Hence, even a small edge in the competition can be important.
Still, the scientific backing and ingredient sourcing of nootropics on the market varies widely, and even those based in some research won't necessarily immediately, always or ever translate to better grades or an ability to finally crank out that novel. Nor are supplements of any kind risk-free, says Jocelyn Kerl, a pharmacist in Madison, Wisconsin.

One of the other suggested benefits is for boosting serotonin levels; low levels of serotonin are implicated in a number of issues like depression. I’m not yet sure whether tryptophan has helped with motivation or happiness. Trial and error has taught me that it’s a bad idea to take tryptophan in the morning or afternoon, however, even smaller quantities like 0.25g. Like melatonin, the dose-response curve is a U: ~1g is great and induces multiple vivid dreams for me, but ~1.5g leads to an awful night and a headache the next day that was worse, if anything, than melatonin. (One morning I woke up with traces of at least 7 dreams, although I managed to write down only 2. No lucid dreams, though.)
Nicotine absorption through the stomach is variable and relatively reduced in comparison with absorption via the buccal cavity and the small intestine. Drinking, eating, and swallowing of tobacco smoke by South American Indians have frequently been reported. Tenetehara shamans reach a state of tobacco narcosis through large swallows of smoke, and Tapirape shams are said to eat smoke by forcing down large gulps of smoke only to expel it again in a rapid sequence of belches. In general, swallowing of tobacco smoke is quite frequently likened to drinking. However, although the amounts of nicotine swallowed in this way - or in the form of saturated saliva or pipe juice - may be large enough to be behaviorally significant at normal levels of gastric pH, nicotine, like other weak bases, is not significantly absorbed.
This is a small water plant native to India. Bacopa is an adaptogen – it helps your body adapt to stress. It also improves memory in healthy adults[12] and enhances attention and mood in people over 65. [13] Scientists still don’t fully understand how Bacopa works, but they do know it takes time to work; study participants didn’t feel its memory-enhancing effects until they’d been supplementing with it daily for 4 weeks, so if you try Bacopa, stick with it for a month before you give up on it.
×