That it is somewhat valuable is clear if we consider it under another guise. Imagine you received the same salary you do, but paid every day. Accounting systems would incur considerable costs handling daily payments, since they would be making so many more and so much smaller payments, and they would have to know instantly whether you showed up to work that day and all sorts of other details, and the recipients themselves would waste time dealing with all these checks or looking through all the deposits to their account, and any errors would be that much harder to track down. (And conversely, expensive payday loans are strong evidence that for poor people, a bi-weekly payment is much too infrequent.) One might draw a comparison to batching or buffers in computers: by letting data pile up in buffers, the computer can then deal with them in one batch, amortizing overhead over many items rather than incurring the overhead again and again. The downside, of course, is that latency will suffer and performance may drop based on that or the items becoming outdated & useless. The right trade-off will depend on the specifics; one would not expect random buffer-sizes to be optimal, but one would have to test and see what works best.

In this large population-based cohort, we saw consistent robust associations between cola consumption and low BMD in women. The consistency of pattern across cola types and after adjustment for potential confounding variables, including calcium intake, supports the likelihood that this is not due to displacement of milk or other healthy beverages in the diet. The major differences between cola and other carbonated beverages are caffeine, phosphoric acid, and cola extract. Although caffeine likely contributes to lower BMD, the result also observed for decaffeinated cola, the lack of difference in total caffeine intake across cola intake groups, and the lack of attenuation after adjustment for caffeine content suggest that caffeine does not explain these results. A deleterious effect of phosphoric acid has been proposed (26). Cola beverages contain phosphoric acid, whereas other carbonated soft drinks (with some exceptions) do not.

The peculiar tired-sharp feeling was there as usual, and the DNB scores continue to suggest this is not an illusion, as they remain in the same 30-50% band as my normal performance. I did not notice the previous aboulia feeling; instead, around noon, I was filled with a nervous energy and a disturbingly rapid pulse which meditation & deep breathing did little to help with, and which didn’t go away for an hour or so. Fortunately, this was primarily at church, so while I felt irritable, I didn’t actually interact with anyone or snap at them, and was able to keep a lid on it. I have no idea what that was about. I wondered if it might’ve been a serotonin storm since amphetamines are some of the drugs that can trigger storms but the Adderall had been at 10:50 AM the previous day, or >25 hours (the half-lives of the ingredients being around 13 hours). An hour or two previously I had taken my usual caffeine-piracetam pill with my morning tea - could that have interacted with the armodafinil and the residual Adderall? Or was it caffeine+modafinil? Speculation, perhaps. A house-mate was ill for a few hours the previous day, so maybe the truth is as prosaic as me catching whatever he had.
Drugs and catastrophe are seemingly never far apart, whether in laboratories, real life or Limitless. Downsides are all but unavoidable: if a drug enhances one particular cognitive function, the price may be paid by other functions. To enhance one dimension of cognition, you’ll need to appropriate resources that would otherwise be available for others.
Long-term use is different, and research-backed efficacy is another question altogether. The nootropic market is not regulated, so a company can make claims without getting in trouble for making those claims because they’re not technically selling a drug. This is why it’s important to look for well-known brands and standardized nootropic herbs where it’s easier to calculate the suggested dose and be fairly confident about what you’re taking.
A fundamental aspect of human evolution has been the drive to augment our capabilities. The neocortex is the neural seat of abstract and higher order cognitive processes. As it grew, so did our ability to create. The invention of tools and weapons, writing, the steam engine, and the computer have exponentially increased our capacity to influence and understand the world around us. These advances are being driven by improved higher-order cognitive processing.1Fascinatingly, the practice of modulating our biology through naturally occurring flora predated all of the above discoveries. Indeed, Sumerian clay slabs as old as 5000 BC detail medicinal recipes which include over 250 plants2. The enhancement of human cognition through natural compounds followed, as people discovered plants containing caffeine, theanine, and other cognition-enhancing, or nootropic, agents.

The benefits that they offer are gradually becoming more clearly understood, and those who use them now have the potential to get ahead of the curve when it comes to learning, information recall, mental clarity, and focus. Everyone is different, however, so take some time to learn what works for you and what doesn’t and build a stack that helps you perform at your best.
One claim was partially verified in passing by Eliezer Yudkowsky (Supplementing potassium (citrate) hasn’t helped me much, but works dramatically for Anna, Kevin, and Vassar…About the same as drinking a cup of coffee - i.e., it works as a perker-upper, somehow. I’m not sure, since it doesn’t do anything for me except possibly mitigate foot cramps.)

The information learned in the tasks reviewed so far was explicit, declarative, and consistent within each experiment. In contrast, probabilistic and procedural learning tasks require the subject to gradually extract a regularity in the associations among stimuli from multiple presentations in which the correct associations are only presented some of the time, with incorrect associations also presented. Findings are mixed in these tasks. Breitenstein and colleagues (2004, 2006) showed subjects drawings of common objects accompanied by nonsense word sounds in training sessions that extended over multiple days. They found faster learning of the to-be-learned, higher probability pairings between sessions (consistent with enhanced retention over longer delays). Breitenstein et al. (2004) found that this enhancement remained a year later. Schlösser et al. (2009) tested subjects’ probabilistic learning ability in the context of a functional magnetic resonance imaging (fMRI) study, comparing performance and brain activation with MPH and placebo. MPH did not affect learning performance as measured by accuracy. Although subjects were overall faster in responding on MPH, this difference was independent of the difficulty of the learning task, and the authors accordingly attributed it to response processes rather than learning.
(I was more than a little nonplussed when the mushroom seller included a little pamphlet educating one about how papaya leaves can cure cancer, and how I’m shortening my life by decades by not eating many raw fruits & vegetables. There were some studies cited, but usually for points disconnected from any actual curing or longevity-inducing results.)
Unfortunately, cognitive enhancement falls between the stools of research funding, which makes it unlikely that such research programs will be carried out. Disease-oriented funders will, by definition, not support research on normal healthy individuals. The topic intersects with drug abuse research only in the assessment of risk, leaving out the study of potential benefits, as well as the comparative benefits of other enhancement methods. As a fundamentally applied research question, it will not qualify for support by funders of basic science. The pharmaceutical industry would be expected to support such research only if cognitive enhancement were to be considered a legitimate indication by the FDA, which we hope would happen only after considerably more research has illuminated its risks, benefits, and societal impact. Even then, industry would have little incentive to delve into all of the issues raised here, including the comparison of drug effects to nonpharmaceutical means of enhancing cognition.
Sometimes called smart drugs, brain boosters, or memory-enhancing drugs, the term "nootropics" was coined by scientist Dr. Corneliu E. Giurgea, who developed the compound piracetam as a brain enhancer, according to The Atlantic. The word is derived from the Greek noo, meaning mind, and trope, which means "change" in French. In essence, all nootropics aim to change your mind by enhancing functions like memory or attention.
Nootropics (/noʊ.əˈtrɒpɪks/ noh-ə-TROP-iks) (colloquial: smart drugs and cognitive enhancers) are drugs, supplements, and other substances that may improve cognitive function, particularly executive functions, memory, creativity, or motivation, in healthy individuals.[1] While many substances are purported to improve cognition, research is at a preliminary stage as of 2018, and the effects of the majority of these agents are not fully determined.