Up to 20% of Ivy League college students have already tried “smart drugs,” so we can expect these pills to feature prominently in organizations (if they don’t already). After all, the pressure to perform is unlikely to disappear the moment students graduate. And senior employees with demanding jobs might find these drugs even more useful than a 19-year-old college kid does. Indeed, a 2012 Royal Society report emphasized that these “enhancements,” along with other technologies for self-enhancement, are likely to have far-reaching implications for the business world.
Recent developments include biosensor-equipped smart pills that sense the appropriate environment and location to release pharmacological agents. Medimetrics (Eindhoven, Netherlands) has developed a pill called IntelliCap with drug reservoir, pH and temperature sensors that release drugs to a defined region of the gastrointestinal tract. This device is CE marked and is in early stages of clinical trials for FDA approval. Recently, Google announced its intent to invest and innovate in this space.
When I worked on the Bulletproof Diet book, I wanted to verify that the effects I was getting from Bulletproof Coffee were not coming from modafinil, so I stopped using it and measured my cognitive performance while I was off of it. What I found was that on Bulletproof Coffee and the Bulletproof Diet, my mental performance was almost identical to my performance on modafinil. I still travel with modafinil, and I’ll take it on occasion, but while living a Bulletproof lifestyle I rarely feel the need.
Similarly, we could try applying Nick Bostrom’s reversal test and ask ourselves, how would we react to a virus which had no effect but to eliminate sleep from alternating nights and double sleep in the intervening nights? We would probably grouch about it for a while and then adapt to our new hedonistic lifestyle of partying or working hard. On the other hand, imagine the virus had the effect of eliminating normal sleep but instead, every 2 minutes, a person would fall asleep for a minute. This would be disastrous! Besides the most immediate problems like safely driving vehicles, how would anything get done? You would hold a meeting and at any point, a third of the participants would be asleep. If the virus made it instead 2 hours on, one hour off, that would be better but still problematic: there would be constant interruptions. And so on, until we reach our present state of 16 hours on, 8 hours off. Given that we rejected all the earlier buffer sizes, one wonders if 16:8 can be defended as uniquely suited to circumstances. Is that optimal? It may be, given the synchronization with the night-day cycle, but I wonder; rush hour alone stands as an argument against synchronized sleep - wouldn’t our infrastructure would be much cheaper if it only had to handle the average daily load rather than cope with the projected peak loads? Might not a longer cycle be better? The longer the day, the less we are interrupted by sleep; it’s a hoary cliche about programmers that they prefer to work in long sustained marathons during long nights rather than sprint occasionally during a distraction-filled day, to the point where some famously adopt a 28 hour day (which evenly divides a week into 6 days). Are there other occupations which would benefit from a 20 hour waking period? Or 24 hour waking period? We might not know because without chemical assistance, circadian rhythms would overpower anyone attempting such schedules. It certainly would be nice if one had long time chunks in which could read a challenging book in one sitting, without heroic arrangements.↩
 Many of the positive effects of cognitive enhancers have been seen in experiments using rats. For example, scientists can train rats on a specific test, such as maze running, and then see if the "smart drug" can improve the rats' performance. It is difficult to see how many of these data can be applied to human learning and memory. For example, what if the "smart drug" made the rat hungry? Wouldn't a hungry rat run faster in the maze to receive a food reward than a non-hungry rat? Maybe the rat did not get any "smarter" and did not have any improved memory. Perhaps the rat ran faster simply because it was hungrier. Therefore, it was the rat's motivation to run the maze, not its increased cognitive ability that affected the performance. Thus, it is important to be very careful when interpreting changes observed in these types of animal learning and memory experiments.

And the drugs are not terribly difficult to get, depending on where you’re located. Modafinil has an annual global share of $700 million, with high estimated off-label use. Although these drugs can be purchased over the internet, their legal status varies between countries. For example, it is legal to possess and use Modafinil in the United Kingdom without a prescription, but not in United States.

The surveys just reviewed indicate that many healthy, normal students use prescription stimulants to enhance their cognitive performance, based in part on the belief that stimulants enhance cognitive abilities such as attention and memorization. Of course, it is possible that these users are mistaken. One possibility is that the perceived cognitive benefits are placebo effects. Another is that the drugs alter students’ perceptions of the amount or quality of work accomplished, rather than affecting the work itself (Hurst, Weidner, & Radlow, 1967). A third possibility is that stimulants enhance energy, wakefulness, or motivation, which improves the quality and quantity of work that students can produce with a given, unchanged, level of cognitive ability. To determine whether these drugs enhance cognition in normal individuals, their effects on cognitive task performance must be assessed in relation to placebo in a masked study design.


Most of the most solid fish oil results seem to meliorate the effects of age; in my 20s, I’m not sure they are worth the cost. But I would probably resume fish oil in my 30s or 40s when aging really becomes a concern. So the experiment at most will result in discontinuing for a decade. At $X a year, that’s a net present value of sum $ map (\n -> 70 / (1 + 0.05)^n) [1..10] = $540.5.
So the chi-squared believes there is a statistically-significant difference, the two-sample test disagrees, and the binomial also disagrees. Since I regarded it as a dubious theory, can’t see a difference, and the binomial seems like the most appropriate test, I conclude that several months of 1mg iodine did not change my eye color. (As a final test, when I posted the results on the Longecity forum where people were claiming the eye color change, I swapped the labels on the photos to see if anyone would claim something along the lines when I look at the photos, I can see a difference!. I thought someone might do that, which would be a damning demonstration of their biases & wishful thinking, but no one did.)
These are quite abstract concepts, though. There is a large gap, a grey area in between these concepts and our knowledge of how the brain functions physiologically – and it’s in this grey area that cognitive enhancer development has to operate. Amy Arnsten, Professor of Neurobiology at Yale Medical School, is investigating how the cells in the brain work together to produce our higher cognition and executive function, which she describes as “being able to think about things that aren’t currently stimulating your senses, the fundamentals of abstraction. This involves mental representations of our goals for the future, even if it’s the future in just a few seconds.”
Can brain enhancing pills actually improve memory? This is a common question and the answer varies, depending on the product you are considering. The top 25 brain enhancement supplements appear to produce results for many users. Research and scientific studies have demonstrated the brain boosting effects of nootropic ingredients in the best quality supplements. At Smart Pill Guide, you can read nootropics reviews and discover how to improve memory for better performance in school or at work.
In addition, while the laboratory research reviewed here is of interest concerning the effects of stimulant drugs on specific cognitive processes, it does not tell us about the effects on cognition in the real world. How do these drugs affect academic performance when used by students? How do they affect the total knowledge and understanding that students take with them from a course? How do they affect various aspects of occupational performance? Similar questions have been addressed in relation to students and workers with ADHD (Barbaresi, Katusic, Colligan, Weaver, & Jacobsen, 2007; Halmøy, Fasmer, Gillberg, & Haavik, 2009; see also Advokat, 2010) but have yet to be addressed in the context of cognitive enhancement of normal individuals.
2 commenters point out that my possible lack of result is due to my mistaken assumption that if nicotine is absorbable through skin, mouth, and lungs it ought to be perfectly fine to absorb it through my stomach by drinking it (rather than vaporizing it and breathing it with an e-cigarette machine) - it’s apparently known that absorption differs in the stomach.

I don’t believe there’s any need to control for training with repeated within-subject sampling, since there will be as many samples on both control and active days drawn from the later trained period as with the initial untrained period. But yes, my D5B scores seem to have plateaued pretty much and only very slowly increase; you can look at the stats file yourself.


It’s not clear that there is much of an effect at all. This makes it hard to design a self-experiment - how big an effect on, say, dual n-back should I be expecting? Do I need an arduous long trial or an easy short one? This would principally determine the value of information too; chocolate seems like a net benefit even if it does not affect the mind, but it’s also fairly costly, especially if one likes (as I do) dark chocolate. Given the mixed research, I don’t think cocoa powder is worth investigating further as a nootropic.
The Defense Department reports rely on data collected by the private real estate firms that operate base housing in partnership with military branches. The companies' compensation is partly determined by the results of resident satisfaction surveys. I had to re-read this sentence like 5 times to make sure I understood it correctly. I just can't even. Seriously, in what universe did anyone think that this would be a good idea?
However, when I didn’t stack it with Choline, I would get what users call “racetam headaches.” Choline, as Patel explains, is not a true nootropic, but it’s still a pro-cognitive compound that many take with other nootropics in a stack. It’s an essential nutrient that humans need for functions like memory and muscle control, but we can’t produce it, and many Americans don’t get enough of it. The headaches I got weren’t terribly painful, but they were uncomfortable enough that I stopped taking Piracetam on its own. Even without the headache, though, I didn’t really like the level of focus Piracetam gave me. I didn’t feel present when I used it, even when I tried to mix in caffeine and L-theanine. And while it seemed like I could focus and do my work faster, I was making more small mistakes in my writing, like skipping words. Essentially, it felt like my brain was moving faster than I could.
Can brain enhancing pills actually improve memory? This is a common question and the answer varies, depending on the product you are considering. The top 25 brain enhancement supplements appear to produce results for many users. Research and scientific studies have demonstrated the brain boosting effects of nootropic ingredients in the best quality supplements. At Smart Pill Guide, you can read nootropics reviews and discover how to improve memory for better performance in school or at work.
The use of prescription stimulants is especially prevalent among students.[9] Surveys suggest that 0.7–4.5% of German students have used cognitive enhancers in their lifetimes.[10][11][12] Stimulants such as dimethylamylamine and methylphenidate are used on college campuses and by younger groups.[13] Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily used for enhancement of academic performance rather than as recreational drugs.[14][15][16] Several factors positively and negatively influence an individual's willingness to use a drug for the purpose of enhancing cognitive performance. Among them are personal characteristics, drug characteristics, and characteristics of the social context.[10][11][17][18]
×