On the other end of the spectrum is the nootropic stack, a practice where individuals create a cocktail or mixture of different smart drugs for daily intake. The mixture and its variety actually depend on the goals of the user. Many users have said that nootropic stacking is more effective for delivering improved cognitive function in comparison to single nootropics.
A “smart pill” is a drug that increases the cognitive ability of anyone taking it, whether the user is cognitively impaired or normal. The Romanian neuroscientist Corneliu Giurgea is often credited with first proposing, in the 1960s, that smart pills should be developed to increase the intelligence of the general population (see Giurgea, 1984). He is quoted as saying, “Man is not going to wait passively for millions of years before evolution offers him a better brain” (Gazzaniga, 2005, p. 71). In their best-selling book, Smart Drugs and Nutrients, Dean and Morgenthaler (1990) reviewed a large number of substances that have been used by healthy individuals with the goal of increasing cognitive ability. These include synthetic and natural products that affect neurotransmitter levels, neurogenesis, and blood flow to the brain. Although many of these substances have their adherents, none have become widely used. Caffeine and nicotine may be exceptions to this generalization, as one motivation among many for their use is cognitive enhancement (Julien, 2001).
Several chemical influences can completely disconnect those circuits so they’re no longer able to excite each other. “That’s what happens when we’re tired, when we’re stressed.” Drugs like caffeine and nicotine enhance the neurotransmitter acetylcholine, which helps restore function to the circuits. Hence people drink tea and coffee, or smoke cigarettes, “to try and put [the] prefrontal cortex into a more optimal state”.
If this is the case, this suggests some thoughtfulness about my use of nicotine: there are times when use of nicotine will not be helpful, but times where it will be helpful. I don’t know what makes the difference, but I can guess it relates to over-stimulation: on some nights during the experiment, I had difficult concentrating on n-backing because it was boring and I was thinking about the other things I was interested in or working on - in retrospect, I wonder if those instances were nicotine nights.
The research literature, while copious, is messy and varied: methodologies and devices vary substantially, sample sizes are tiny, the study designs vary from paper to paper, metrics are sometimes comically limited (one study measured speed of finishing a RAPM IQ test but not scores), blinding is rare and unclear how successful, etc. Relevant papers include Chung et al 2012, Rojas & Gonzalez-Lima 2013, & Gonzalez-Lima & Barrett 2014. Another Longecity user ran a self-experiment, with some design advice from me, where he performed a few cognitive tests over several periods of LLLT usage (the blocks turned out to be ABBA), using his father and towels to try to blind himself as to condition. I analyzed his data, and his scores did seem to improve, but his scores improved so much in the last part of the self-experiment I found myself dubious as to what was going on - possibly a failure of randomness given too few blocks and an temporal exogenous factor in the last quarter which was responsible for the improvement.
The next cheap proposition to test is that the 2ml dose is so large that the sedation/depressive effect of nicotine has begun to kick in. This is easy to test: take much less, like half a ml. I do so two or three times over the next day, and subjectively the feeling seems to be the same - which seems to support that proposition (although perhaps I’ve been placebo effecting myself this whole time, in which case the exact amount doesn’t matter). If this theory is true, my previous sleep results don’t show anything; one would expect nicotine-as-sedative to not hurt sleep or improve it. I skip the day (no cravings or addiction noticed), and take half a ml right before bed at 11:30; I fall asleep in 12 minutes and have a ZQ of ~105. The next few days I try putting one or two drops into the tea kettle, which seems to work as well (or poorly) as before. At that point, I was warned that there were some results that nicotine withdrawal can kick in with delays as long as a week, so I shouldn’t be confident that a few days off proved an absence of addiction; I immediately quit to see what the week would bring. 4 or 7 days in, I didn’t notice anything. I’m still using it, but I’m definitely a little nonplussed and disgruntled - I need some independent source of nicotine to compare with!
A similar pill from HQ Inc. (Palmetto, Fla.) called the CorTemp Ingestible Core Body Temperature Sensor transmits real-time body temperature. Firefighters, football players, soldiers and astronauts use it to ensure that they do not overheat in high temperatures. HQ Inc. is working on a consumer version, to be available in 2018, that would wirelessly communicate to a smartphone app.
The evidence? A 2012 study in Greece found it can boost cognitive function in adults with mild cognitive impairment (MCI), a type of disorder marked by forgetfulness and problems with language, judgement, or planning that are more severe than average “senior moments,” but are not serious enough to be diagnosed as dementia. In some people, MCI will progress into dementia.

Systematic reviews and meta-analyses of clinical human research using low doses of certain central nervous system stimulants found enhanced cognition in healthy people.[21][22][23] In particular, the classes of stimulants that demonstrate cognition-enhancing effects in humans act as direct agonists or indirect agonists of dopamine receptor D1, adrenoceptor A2, or both types of receptor in the prefrontal cortex.[21][22][24][25] Relatively high doses of stimulants cause cognitive deficits.[24][25]
×