The use of cognitive enhancers by healthy individuals sparked debate about ethics and safety. Cognitive enhancement by pharmaceutical means was considered a form of illicit drug use in some places, even while other cognitive enhancers, such as caffeine and nicotine, were freely available. The conflict therein raised the possibility for further acceptance of smart drugs in the future. However, the long-term effects of smart drugs on otherwise healthy brains were unknown, delaying safety assessments.
The flanker task is designed to tax cognitive control by requiring subjects to respond based on the identity of a target stimulus (H or S) and not the more numerous and visually salient stimuli that flank the target (as in a display such as HHHSHHH). Servan-Schreiber, Carter, Bruno, and Cohen (1998) administered the flanker task to subjects on placebo and d-AMP. They found an overall speeding of responses but, more importantly, an increase in accuracy that was disproportionate for the incongruent conditions, that is, the conditions in which the target and flankers did not match and cognitive control was needed.
The choline-based class of smart drugs play important cognitive roles in memory, attention, and mood regulation. Acetylcholine (ACh) is one of the brain’s primary neurotransmitters, and also vital in the proper functioning of the peripheral nervous system. Studies with rats have shown that certain forms of learning and neural plasticity seem to be impossible in acetylcholine-depleted areas of the brain. This is particularly worth mentioning because (as noted above under the Racetams section), the Racetam class of smart drugs tends to deplete cholines from the brain, so one of the classic “supplement stacks” – chemical supplements that are used together – are Piracetam and Choline Bitartrate. Cholines can also be found in normal food sources, like egg yolks and soybeans.
These are the most highly studied ingredients and must be combined together to achieve effective results. If any one ingredient is missing in the formula, you may not get the full cognitive benefits of the pill. It is important to go with a company that has these critical ingredients as well as a complete array of supporting ingredients to improve their absorption and effectiveness. Anything less than the correct mix will not work effectively.
The magnesium was neither randomized nor blinded and included mostly as a covariate to avoid confounding (the Noopept coefficient & t-value increase somewhat without the Magtein variable), so an OR of 1.9 is likely too high; in any case, this experiment was too small to reliably detect any effect (~26% power, see bootstrap power simulation in the magnesium section) so we can’t say too much.

If you happen to purchase anything recommended on this or affiliated websites, we will likely receive some kind of affiliate compensation. We only recommend stuff that we truly believe in and share with our friends and family. If you ever have an issue with anything we recommend please let us know. We want to make sure we are always serving you at the highest level. If you are purchasing using our affiliate link, you will not pay a different price for the products and/or services, but your purchase helps support our ongoing work. Thanks for your support!
The stimulant now most popular in news articles as a legitimate “smart drug” is Modafinil, which came to market as an anti-narcolepsy drug, but gained a following within the military, doctors on long shifts, and college students pulling all-nighters who needed a drug to improve alertness without the “wired” feeling associated with caffeine. Modafinil is a relatively new smart drug, having gained widespread use only in the past 15 years. More research is needed before scientists understand this drug’s function within the brain – but the increase in alertness it provides is uncontested.
Two studies investigated the effects of MPH on reversal learning in simple two-choice tasks (Clatworthy et al., 2009; Dodds et al., 2008). In these tasks, participants begin by choosing one of two stimuli and, after repeated trials with these stimuli, learn that one is usually rewarded and the other is usually not. The rewarded and nonrewarded stimuli are then reversed, and participants must then learn to choose the new rewarded stimulus. Although each of these studies found functional neuroimaging correlates of the effects of MPH on task-related brain activity (increased blood oxygenation level-dependent signal in frontal and striatal regions associated with task performance found by Dodds et al., 2008, using fMRI and increased dopamine release in the striatum as measured by increased raclopride displacement by Clatworthy et al., 2009, using PET), neither found reliable effects on behavioral performance in these tasks. The one significant result concerning purely behavioral measures was Clatworthy et al.’s (2009) finding that participants who scored higher on a self-report personality measure of impulsivity showed more performance enhancement with MPH. MPH’s effect on performance in individuals was also related to its effects on individuals’ dopamine activity in specific regions of the caudate nucleus.
Low-dose lithium orotate is extremely cheap, ~$10 a year. There is some research literature on it improving mood and impulse control in regular people, but some of it is epidemiological (which implies considerable unreliability); my current belief is that there is probably some effect size, but at just 5mg, it may be too tiny to matter. I have ~40% belief that there will be a large effect size, but I’m doing a long experiment and I should be able to detect a large effect size with >75% chance. So, the formula is NPV of the difference between taking and not taking, times quality of information, times expectation: \frac{10 - 0}{\ln 1.05} \times 0.75 \times 0.40 = 61.4, which justifies a time investment of less than 9 hours. As it happens, it took less than an hour to make the pills & placebos, and taking them is a matter of seconds per week, so the analysis will be the time-consuming part. This one may actually turn a profit.
Popular smart drugs on the market include methylphenidate (commonly known as Ritalin) and amphetamine (Adderall), stimulants normally used to treat attention deficit hyperactivity disorder or ADHD. In recent years, another drug called modafinil has emerged as the new favourite amongst college students. Primarily used to treat excessive sleepiness associated with the sleep disorder narcolepsy, modafinil increases alertness and energy.

Theanine can also be combined with caffeine as both of them work in synergy to increase memory, reaction time, mental endurance, and memory. The best part about Theanine is that it is one of the safest nootropics and is readily available in the form of capsules.  A natural option would be to use an excellent green tea brand which constitutes of tea grown in the shade because then Theanine would be abundantly present in it.
When comparing supplements, consider products with a score above 90% to get the greatest benefit from smart pills to improve memory. Additionally, we consider the reviews that users send to us when scoring supplements, so you can determine how well products work for others and use this information to make an informed decision. Every month, our editor puts her name on that month’s best smart bill, in terms of results and value offered to users.

It's been widely reported that Silicon Valley entrepreneurs and college students turn to Adderall (without a prescription) to work late through the night. In fact, a 2012 study published in the Journal of American College Health, showed that roughly two-thirds of undergraduate students were offered prescription stimulants for non-medical purposes by senior year.

It can easily pass through the blood-brain barrier and is known to protect the nerve tissues present in the brain. There is evidence that the acid plays an instrumental role in preventing strokes in adults by decreasing the number of free radicals in the body.  It increases the production of acetylcholine, a neurotransmitter that most Alzheimer’s patients are a deficit in.
Natural-sourced ingredients can also help to enhance your brain. Superfood, herbal or Amino A ingredient cognitive enhancers are more natural and are largely directly derived from food or plants. Panax ginseng, matcha tea and choline (found in foods like broccoli) are included under this umbrella. There are dozens of different natural ingredients /herbs purported to help cognition, many of which have been used medicinally for hundreds of years.
I ultimately mixed it in with the 3kg of piracetam and included it in that batch of pills. I mixed it very thoroughly, one ingredient at a time, so I’m not very worried about hot spots. But if you are, one clever way to get accurate caffeine measurements is to measure out a large quantity & dissolve it since it’s easier to measure water than powder, and dissolving guarantees even distribution. This can be important because caffeine is, like nicotine, an alkaloid poison which - the dose makes the poison - can kill in high doses, and concentrated powder makes it easy to take too much, as one inept Englishman discovered the hard way. (This dissolving trick is applicable to anything else that dissolves nicely.)
These are quite abstract concepts, though. There is a large gap, a grey area in between these concepts and our knowledge of how the brain functions physiologically – and it’s in this grey area that cognitive enhancer development has to operate. Amy Arnsten, Professor of Neurobiology at Yale Medical School, is investigating how the cells in the brain work together to produce our higher cognition and executive function, which she describes as “being able to think about things that aren’t currently stimulating your senses, the fundamentals of abstraction. This involves mental representations of our goals for the future, even if it’s the future in just a few seconds.”
Regarding other methods of cognitive enhancement, little systematic research has been done on their prevalence among healthy people for the purpose of cognitive enhancement. One exploratory survey found evidence of modafinil use by people seeking cognitive enhancement (Maher, 2008), and anecdotal reports of this can be found online (e.g., Arrington, 2008; Madrigal, 2008). Whereas TMS requires expensive equipment, tDCS can be implemented with inexpensive and widely available materials, and online chatter indicates that some are experimenting with this method.
Table 3 lists the results of 24 tasks from 22 articles on the effects of d-AMP or MPH on learning, assessed by a variety of declarative and nondeclarative memory tasks. Results for the 24 tasks are evenly split between enhanced learning and null results, but they yield a clearer pattern when the nature of the learning task and the retention interval are taken into account. In general, with single exposures of verbal material, no benefits are seen immediately following learning, but later recall and recognition are enhanced. Of the six articles reporting on memory performance (Camp-Bruno & Herting, 1994; Fleming, Bigelow, Weinberger, & Goldberg, 1995; Rapoport, Busbaum, & Weingartner, 1980; Soetens, D’Hooge, & Hueting, 1993; Unrug, Coenen, & van Luijtelaar, 1997; Zeeuws & Soetens 2007), encompassing eight separate experiments, only one of the experiments yielded significant memory enhancement at short delays (Rapoport et al., 1980). In contrast, retention was reliably enhanced by d-AMP when subjects were tested after longer delays, with recall improved after 1 hr through 1 week (Soetens, Casaer, D’Hooge, & Hueting, 1995; Soetens et al., 1993; Zeeuws & Soetens, 2007). Recognition improved after 1 week in one study (Soetens et al., 1995), while another found recognition improved after 2 hr (Mintzer & Griffiths, 2007). The one long-term memory study to examine the effects of MPH found a borderline-significant reduction in errors when subjects answered questions about a story (accompanied by slides) presented 1 week before (Brignell, Rosenthal, & Curran, 2007).

The benefits that they offer are gradually becoming more clearly understood, and those who use them now have the potential to get ahead of the curve when it comes to learning, information recall, mental clarity, and focus. Everyone is different, however, so take some time to learn what works for you and what doesn’t and build a stack that helps you perform at your best.

“As a brain injury survivor that still deals with extreme light sensitivity, eye issues and other brain related struggles I have found a great diet is a key to brain health! Cavin’s book is a much needed guide to eating for brain health. While you can fill shelves with books that teach you good nutrition, Cavin’s book teaches you how to help your brain with what you eat. This is a much needed addition to the nutrition section! If you are looking to get the optimum performance out of your brain, get this book now! You won’t regret it.”
Brain-imaging studies are consistent with the existence of small effects that are not reliably captured by the behavioral paradigms of the literature reviewed here. Typically with executive function tasks, reduced activation of task-relevant areas is associated with better performance and is interpreted as an indication of higher neural efficiency (e.g., Haier, Siegel, Tang, Abel, & Buchsbaum, 1992). Several imaging studies showed effects of stimulants on task-related activation while failing to find effects on cognitive performance. Although changes in brain activation do not necessarily imply functional cognitive changes, they are certainly suggestive and may well be more sensitive than behavioral measures. Evidence of this comes from a study of COMT variation and executive function. Egan and colleagues (2001) found a genetic effect on executive function in an fMRI study with sample sizes as small as 11 but did not find behavioral effects in these samples. The genetic effect on behavior was demonstrated in a separate study with over a hundred participants. In sum, d-AMP and MPH measurably affect the activation of task-relevant brain regions when participants’ task performance does not differ. This is consistent with the hypothesis (although by no means positive proof) that stimulants exert a true cognitive-enhancing effect that is simply too small to be detected in many studies.
If you haven’t seen the movie, imagine unfathomable brain power in capsule form. Picture a drug from another universe. It can transform an unsuccessful couch potato into a millionaire financial mogul. Ingesting the powerful smart pill boosts intelligence and turns you into a prodigy. Its results are instant. Sounds great, right? If only it were real.

Terms and Conditions: The content and products found at,, the Adventures in Brain Injury Podcast, or provided by Cavin Balaster or others on the Feed a Brain team is intended for informational purposes only and is not provided by medical professionals. The information on this website has not been evaluated by the food & drug administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. Readers/listeners/viewers should not act upon any information provided on this website or affiliated websites without seeking advice from a licensed physician, especially if pregnant, nursing, taking medication, or suffering from a medical condition. This website is not intended to create a physician-patient relationship.

Clearly, the hype surrounding drugs like modafinil and methylphenidate is unfounded. These drugs are beneficial in treating cognitive dysfunction in patients with Alzheimer's, ADHD or schizophrenia, but it's unlikely that today's enhancers offer significant cognitive benefits to healthy users. In fact, taking a smart pill is probably no more effective than exercising or getting a good night's sleep.
In the nearer future, Lynch points to nicotinic receptor agents – molecules that act on the neurotransmitter receptors affected by nicotine – as ones to watch when looking out for potential new cognitive enhancers. Sarter agrees: a class of agents known as α4β2* nicotinic receptor agonists, he says, seem to act on mechanisms that control attention. Among the currently known candidates, he believes they come closest “to fulfilling the criteria for true cognition enhancers.”
One possibility is that when an individual takes a drug like noopept, they experience greater alertness and mental clarity. So, while the objective ability to see may not actually improve, the ability to process visual stimuli increases, resulting in the perception of improved vision. This allows individuals to process visual cues more quickly, take in scenes more easily, and allows for the increased perception of smaller details.

With something like creatine, you’d know if it helps you pump out another rep at the gym on a sustainable basis. With nootropics, you can easily trick yourself into believing they help your mindset. The ideal is to do a trial on yourself. Take identical looking nootropic pills and placebo pills for a couple weeks each, then see what the difference is. With only a third party knowing the difference, of course.
Similarly, Mehta et al 2000 noted that the positive effects of methylphenidate (40 mg) on spatial working memory performance were greatest in those volunteers with lower baseline working memory capacity. In a study of the effects of ginkgo biloba in healthy young adults, Stough et al 2001 found improved performance in the Trail-Making Test A only in the half with the lower verbal IQ.
On the other hand, sometimes you’ll feel a great cognitive boost as soon as you take a pill. That can be a good thing or a bad thing. I find, for example, that modafinil makes you more of what you already are. That means if you are already kind of a dick and you take modafinil, you might act like a really big dick and regret it. It certainly happened to me! I like to think that I’ve done enough hacking of my brain that I’ve gotten over that programming… and that when I use nootropics they help me help people.