Ethical issues also arise with the use of drugs to boost brain power. Their use as cognitive enhancers isn’t currently regulated. But should it be, just as the use of certain performance-enhancing drugs is regulated for professional athletes? Should universities consider dope testing to check that students aren’t gaining an unfair advantage through drug use? 


Not all drug users are searching for a chemical escape hatch. A newer and increasingly normalized drug culture is all about heightening one’s current relationship to reality—whether at work or school—by boosting the brain’s ability to think under stress, stay alert and productive for long hours, and keep track of large amounts of information. In the name of becoming sharper traders, medical interns, or coders, people are taking pills typically prescribed for conditions including ADHD, narcolepsy, and Alzheimer’s. Others down “stacks” of special “nootropic” supplements.
Somewhat ironically given the stereotypes, while I was in college I dabbled very little in nootropics, sticking to melatonin and tea. Since then I have come to find nootropics useful, and intellectually interesting: they shed light on issues in philosophy of biology & evolution, argue against naive psychological dualism and for materialism, offer cases in point on the history of technology & civilization or recent psychology theories about addiction & willpower, challenge our understanding of the validity of statistics and psychology - where they don’t offer nifty little problems in statistics and economics themselves, and are excellent fodder for the young Quantified Self movement4; modafinil itself demonstrates the little-known fact that sleep has no accepted evolutionary explanation. (The hard drugs also have more ramifications than one might expect: how can one understand the history of Southeast Asia and the Vietnamese War without reference to heroin, or more contemporaneously, how can one understand the lasting appeal of the Taliban in Afghanistan and the unpopularity & corruption of the central government without reference to the Taliban’s frequent anti-drug campaigns or the drug-funded warlords of the Northern Alliance?)

Nootrobox co-founder Geoffrey Woo declines a caffeinated drink in favour of a capsule of his newest product when I meet him in a San Francisco coffee shop. The entire industry has a “wild west” aura about it, he tells me, and Nootrobox wants to fix it by pushing for “smarter regulation” so safe and effective drugs that are currently unclassified can be brought into the fold. Predictably, both companies stress the higher goal of pushing forward human cognition. “I am trying to make a smarter, better populace to solve all the problems we have created,” says Nootroo founder Eric Matzner.


Instead, I urge the military to examine the use of smart drugs and the potential benefits they bring to the military. If they are safe, and pride cognitive enhancement to servicemembers, then we should discuss their use in the military. Imagine the potential benefits on the battlefield. They could potentially lead to an increase in the speed and tempo of our individual and collective OODA loop. They could improve our ability to become aware and make observations. Improve the speed of orientation and decision-making. Lastly, smart drugs could improve our ability to act and adapt to rapidly changing situations.
A “smart pill” is a drug that increases the cognitive ability of anyone taking it, whether the user is cognitively impaired or normal. The Romanian neuroscientist Corneliu Giurgea is often credited with first proposing, in the 1960s, that smart pills should be developed to increase the intelligence of the general population (see Giurgea, 1984). He is quoted as saying, “Man is not going to wait passively for millions of years before evolution offers him a better brain” (Gazzaniga, 2005, p. 71). In their best-selling book, Smart Drugs and Nutrients, Dean and Morgenthaler (1990) reviewed a large number of substances that have been used by healthy individuals with the goal of increasing cognitive ability. These include synthetic and natural products that affect neurotransmitter levels, neurogenesis, and blood flow to the brain. Although many of these substances have their adherents, none have become widely used. Caffeine and nicotine may be exceptions to this generalization, as one motivation among many for their use is cognitive enhancement (Julien, 2001).

One of the most common strategies to beat this is cycling. Users who cycle their nootropics take them for a predetermined period, (usually around five days) before taking a two-day break from using them. Once the two days are up, they resume the cycle. By taking a break, nootropic users reduce the tolerance for nootropics and lessen the risk of regression and tolerance symptoms.

Some data suggest that cognitive enhancers do improve some types of learning and memory, but many other data say these substances have no effect. The strongest evidence for these substances is for the improvement of cognitive function in people with brain injury or disease (for example, Alzheimer's disease and traumatic brain injury). Although "popular" books and companies that sell smart drugs will try to convince you that these drugs work, the evidence for any significant effects of these substances in normal people is weak. There are also important side-effects that must be considered. Many of these substances affect neurotransmitter systems in the central nervous system. The effects of these chemicals on neurological function and behavior is unknown. Moreover, the long-term safety of these substances has not been adequately tested. Also, some substances will interact with other substances. A substance such as the herb ma-huang may be dangerous if a person stops taking it suddenly; it can also cause heart attacks, stroke, and sudden death. Finally, it is important to remember that products labeled as "natural" do not make them "safe."
Taken together, these considerations suggest that the cognitive effects of stimulants for any individual in any task will vary based on dosage and will not easily be predicted on the basis of data from other individuals or other tasks. Optimizing the cognitive effects of a stimulant would therefore require, in effect, a search through a high-dimensional space whose dimensions are dose; individual characteristics such as genetic, personality, and ability levels; and task characteristics. The mixed results in the current literature may be due to the lack of systematic optimization.
Harrisburg, NC -- (SBWIRE) -- 02/18/2019 -- Global Smart Pills Technology Market - Segmented by Technology, Disease Indication, and Geography - Growth, Trends, and Forecast (2019 - 2023) The smart pill is a wireless capsule that can be swallowed, and with the help of a receiver (worn by patients) and software that analyzes the pictures captured by the smart pill, the physician is effectively able to examine the gastrointestinal tract. Gastrointestinal disorders have become very common, but recently, there has been increasing incidence of colorectal cancer, inflammatory bowel disease, and Crohns disease as well.
I have also tried to get in contact with senior executives who have experience with these drugs (either themselves or in their firms), but without success. I have to wonder: Are they completely unaware of the drugs’ existence? Or are they actively suppressing the issue? For now, companies can ignore the use of smart drugs. And executives can pretend as if these drugs don’t exist in their workplaces. But they can’t do it forever.

Imagine a pill you can take to speed up your thought processes, boost your memory, and make you more productive. If it sounds like the ultimate life hack, you’re not alone. There are pills that promise that out there, but whether they work is complicated. Here are the most popular cognitive enhancers available, and what science actually says about them.
A big part is that we are finally starting to apply complex systems science to psycho-neuro-pharmacology and a nootropic approach. The neural system is awesomely complex and old-fashioned reductionist science has a really hard time with complexity. Big companies spends hundreds of millions of dollars trying to separate the effects of just a single molecule from placebo – and nootropics invariably show up as “stacks” of many different ingredients (ours, Qualia , currently has 42 separate synergistic nootropics ingredients from alpha GPC to bacopa monnieri and L-theanine). That kind of complex, multi pathway input requires a different methodology to understand well that goes beyond simply what’s put in capsules.
Critics will often highlight ethical issues and the lack of scientific evidence for these drugs. Ethical arguments typically take the form of “tampering with nature.” Alena Buyx discusses this argument in a neuroethics project called Smart Drugs: Ethical Issues. She says that critics typically ask if it is ethically superior to accept what is “given” instead of striving for what is “made”. My response to this is simple. Just because it is natural does not mean it is superior.
Much better than I had expected. One of the best superhero movies so far, better than Thor or Watchmen (and especially better than the Iron Man movies). I especially appreciated how it didn’t launch right into the usual hackneyed creation of the hero plot-line but made Captain America cool his heels performing & selling war bonds for 10 or 20 minutes. The ending left me a little nonplussed, although I sort of knew it was envisioned as a franchise and I would have to admit that showing Captain America wondering at Times Square is much better an ending than something as cliche as a close-up of his suddenly-opened eyes and then a fade out. (The movie continued the lamentable trend in superhero movies of having a strong female love interest… who only gets the hots for the hero after they get muscles or powers. It was particularly bad in CA because she knows him and his heart of gold beforehand! What is the point of a feminist character who is immediately forced to do that?)↩
The miniaturization of electronic components has been crucial to smart pill design. As cloud computing and wireless communication platforms are integrated into the health care system, the use of smart pills for monitoring vital signs and medication compliance is likely to increase. In the long term, smart pills are expected to be an integral component of remote patient monitoring and telemedicine. As the call for noninvasive point-of-care testing increases, smart pills will become mainstream devices.

Racetams are the best-known smart drugs on the market, and have decades of widespread use behind them. Piracetam is a leading smart drug, commonly prescribed to seniors with Alzheimer’s or pre-dementia symptoms – but studies have shown Piracetam’s beneficial effects extend to people of all ages, as young as university students. The Racetams speed up chemical exchange between brain cells. Effects include increases in verbal learning, mental clarity, and general IQ. Other members of the Racetam family include Pramiracetam, Oxiracetam, аnԁ Aniracetam, which differ from Piracetam primarily in their potency, not their actual effects.

Racetams, such as piracetam, oxiracetam, and aniracetam, which are often marketed as cognitive enhancers and sold over-the-counter. Racetams are often referred to as nootropics, but this property is not well established.[31] The racetams have poorly understood mechanisms, although piracetam and aniracetam are known to act as positive allosteric modulators of AMPA receptors and appear to modulate cholinergic systems.[32]
×