Evidence in support of the neuroprotective effects of flavonoids has increased significantly in recent years, although to date much of this evidence has emerged from animal rather than human studies. Nonetheless, with a view to making recommendations for future good practice, we review 15 existing human dietary intervention studies that have examined the effects of particular types of flavonoid on cognitive performance. The studies employed a total of 55 different cognitive tests covering a broad range of cognitive domains. Most studies incorporated at least one measure of executive function/working memory, with nine reporting significant improvements in performance as a function of flavonoid supplementation compared to a control group. However, some domains were overlooked completely (e.g. implicit memory, prospective memory), and for the most part there was little consistency in terms of the particular cognitive tests used making across study comparisons difficult. Furthermore, there was some confusion concerning what aspects of cognitive function particular tests were actually measuring. Overall, while initial results are encouraging, future studies need to pay careful attention when selecting cognitive measures, especially in terms of ensuring that tasks are actually sensitive enough to detect treatment effects.
It’s not clear that there is much of an effect at all. This makes it hard to design a self-experiment - how big an effect on, say, dual n-back should I be expecting? Do I need an arduous long trial or an easy short one? This would principally determine the value of information too; chocolate seems like a net benefit even if it does not affect the mind, but it’s also fairly costly, especially if one likes (as I do) dark chocolate. Given the mixed research, I don’t think cocoa powder is worth investigating further as a nootropic.

Either way, if more and more people use these types of stimulants, there may be a risk that we will find ourselves in an ever-expanding neurological arm’s race, argues philosophy professor Nicole Vincent. But is this necessarily a bad thing? No, says Farahany, who sees the improvement in cognitive functioning as a social good that we should pursue. Better brain functioning would result in societal benefits, she argues, “like economic gains or even reducing dangerous errors.”

Hericium erinaceus (Examine.com) was recommended strongly by several on the ImmInst.org forums for its long-term benefits to learning, apparently linked to Nerve growth factor. Highly speculative stuff, and it’s unclear whether the mushroom powder I bought was the right form to take (ImmInst.org discussions seem to universally assume one is taking an alcohol or hotwater extract). It tasted nice, though, and I mixed it into my sleeping pills (which contain melatonin & tryptophan). I’ll probably never know whether the $30 for 0.5lb was well-spent or not.

Imagine a pill you can take to speed up your thought processes, boost your memory, and make you more productive. If it sounds like the ultimate life hack, you’re not alone. There are pills that promise that out there, but whether they work is complicated. Here are the most popular cognitive enhancers available, and what science actually says about them.
A record of nootropics I have tried, with thoughts about which ones worked and did not work for me. These anecdotes should be considered only as anecdotes, and one’s efforts with nootropics a hobby to put only limited amounts of time into due to the inherent limits of drugs as a force-multiplier compared to other things like programming1; for an ironic counterpoint, I suggest the reader listen to a video of Jonathan Coulton’s I Feel Fantastic while reading.

The goal of this article has been to synthesize what is known about the use of prescription stimulants for cognitive enhancement and what is known about the cognitive effects of these drugs. We have eschewed discussion of ethical issues in favor of simply trying to get the facts straight. Although ethical issues cannot be decided on the basis of facts alone, neither can they be decided without relevant facts. Personal and societal values will dictate whether success through sheer effort is as good as success with pharmacologic help, whether the freedom to alter one’s own brain chemistry is more important than the right to compete on a level playing field at school and work, and how much risk of dependence is too much risk. Yet these positions cannot be translated into ethical decisions in the real world without considerable empirical knowledge. Do the drugs actually improve cognition? Under what circumstances and for whom? Who will be using them and for what purposes? What are the mental and physical health risks for frequent cognitive-enhancement users? For occasional users?
Of course, there are drugs out there with more transformative powers. “I think it’s very clear that some do work,” says Andrew Huberman, a neuroscientist based at Stanford University. In fact, there’s one category of smart drugs which has received more attention from scientists and biohackers – those looking to alter their own biology and abilities – than any other. These are the stimulants.
Second, users are concerned with the possibility of withdrawal if they stop taking the nootropics. They worry that if they stop taking nootropics they won’t be as smart as when they were taking nootropics, and will need to continue taking them to function. Some users report feeling a slight brain fog when discontinuing nootropics, but that isn’t a sign of regression.
A “smart pill” is a drug that increases the cognitive ability of anyone taking it, whether the user is cognitively impaired or normal. The Romanian neuroscientist Corneliu Giurgea is often credited with first proposing, in the 1960s, that smart pills should be developed to increase the intelligence of the general population (see Giurgea, 1984). He is quoted as saying, “Man is not going to wait passively for millions of years before evolution offers him a better brain” (Gazzaniga, 2005, p. 71). In their best-selling book, Smart Drugs and Nutrients, Dean and Morgenthaler (1990) reviewed a large number of substances that have been used by healthy individuals with the goal of increasing cognitive ability. These include synthetic and natural products that affect neurotransmitter levels, neurogenesis, and blood flow to the brain. Although many of these substances have their adherents, none have become widely used. Caffeine and nicotine may be exceptions to this generalization, as one motivation among many for their use is cognitive enhancement (Julien, 2001).
Long-term use is different, and research-backed efficacy is another question altogether. The nootropic market is not regulated, so a company can make claims without getting in trouble for making those claims because they’re not technically selling a drug. This is why it’s important to look for well-known brands and standardized nootropic herbs where it’s easier to calculate the suggested dose and be fairly confident about what you’re taking.
Since LLLT was so cheap, seemed safe, was interesting, just trying it would involve minimal effort, and it would be a favor to lostfalco, I decided to try it. I purchased off eBay a $13 48 LED illuminator light IR Infrared Night Vision+Power Supply For CCTV. Auto Power-On Sensor, only turn-on when the surrounding is dark. IR LED wavelength: 850nm. Powered by DC 12V 500mA adaptor. It arrived in 4 days, on 7 September 2013. It fits handily in my palm. My cellphone camera verified it worked and emitted infrared - important because there’s no visible light at all (except in complete darkness I can make out a faint red light), no noise, no apparent heat (it took about 30 minutes before the lens or body warmed up noticeably when I left it on a table). This was good since I worried that there would be heat or noise which made blinding impossible; all I had to do was figure out how to randomly turn the power on and I could run blinded self-experiments with it.

I ultimately mixed it in with the 3kg of piracetam and included it in that batch of pills. I mixed it very thoroughly, one ingredient at a time, so I’m not very worried about hot spots. But if you are, one clever way to get accurate caffeine measurements is to measure out a large quantity & dissolve it since it’s easier to measure water than powder, and dissolving guarantees even distribution. This can be important because caffeine is, like nicotine, an alkaloid poison which - the dose makes the poison - can kill in high doses, and concentrated powder makes it easy to take too much, as one inept Englishman discovered the hard way. (This dissolving trick is applicable to anything else that dissolves nicely.)
Compared with those reporting no use, subjects drinking >4 cups/day of decaffeinated coffee were at increased risk of RA [rheumatoid arthritis] (RR 2.58, 95% CI 1.63-4.06). In contrast, women consuming >3 cups/day of tea displayed a decreased risk of RA (RR 0.39, 95% CI 0.16-0.97) compared with women who never drank tea. Caffeinated coffee and daily caffeine intake were not associated with the development of RA.
Now, what is the expected value (EV) of simply taking iodine, without the additional work of the experiment? 4 cans of 0.15mg x 200 is $20 for 2.1 years’ worth or ~$10 a year or a NPV cost of $205 (\frac{10}{\ln 1.05}) versus a 20% chance of $2000 or $400. So the expected value is greater than the NPV cost of taking it, so I should start taking iodine.
The main concern with pharmaceutical drugs is adverse effects, which also apply to nootropics with undefined effects. Long-term safety evidence is typically unavailable for nootropics.[13] Racetams — piracetam and other compounds that are structurally related to piracetam — have few serious adverse effects and low toxicity, but there is little evidence that they enhance cognition in people having no cognitive impairments.[19]
×