Before you try nootropics, I suggest you start with the basics: get rid of the things in your diet and life that reduce cognitive performance first. That is easiest. Then, add in energizers like Brain Octane and clean up your diet. Then, go for the herbals and the natural nootropics. Use the pharmaceuticals selectively only after you’ve figured out your basics.

The amphetamine mix branded Adderall is terribly expensive to obtain even compared to modafinil, due to its tight regulation (a lower schedule than modafinil), popularity in college as a study drug, and reportedly moves by its manufacture to exploit its privileged position as a licensed amphetamine maker to extract more consumer surplus. I paid roughly $4 a pill but could have paid up to $10. Good stimulant hygiene involves recovery periods to avoid one’s body adapting to eliminate the stimulating effects, so even if Adderall was the answer to all my woes, I would not be using it more than 2 or 3 times a week. Assuming 50 uses a year (for specific projects, let’s say, and not ordinary aimless usage), that’s a cool $200 a year. My general belief was that Adderall would be too much of a stimulant for me, as I am amphetamine-naive and Adderall has a bad reputation for letting one waste time on unimportant things. We could say my prediction was 50% that Adderall would be useful and worth investigating further. The experiment was pretty simple: blind randomized pills, 10 placebo & 10 active. I took notes on how productive I was and the next day guessed whether it was placebo or Adderall before breaking the seal and finding out. I didn’t do any formal statistics for it, much less a power calculation, so let’s try to be conservative by penalizing the information quality heavily and assume it had 25%. So \frac{200 - 0}{\ln 1.05} \times 0.50 \times 0.25 = 512! The experiment probably used up no more than an hour or two total.
Racetams are often used as a smart drug by finance workers, students, and individuals in high-pressure jobs as a way to help them get into a mental flow state and work for long periods of time. Additionally, the habits and skills that an individual acquires while using a racetam can still be accessed when someone is not taking racetams because it becomes a habit.
In paired-associates learning, subjects are presented with pairs of stimuli and must learn to recall the second item of the pair when presented with the first. For these tasks, as with tasks involving memory for individual items, there is a trend for stimulants to enhance performance with longer delays. For immediate measures of learning, no effects of d-AMP or MPH were observed by Brumaghim and Klorman (1998); Fleming et al. (1995); Hurst, Radlow, and Weidner (1968); or Strauss et al. (1984). However, when Hurst et al.’s subjects were tested a week later, they recalled more if their initial learning had been carried out with d-AMP than with placebo. Weitzner (1965) assessed paired-associates learning with an immediate cued-recall test and found facilitation when the associate word was semantically related to the cue, provided it was not also related to other cue words. Finally, Burns, House, French, and Miller (1967) found a borderline-significant impairment of performance with d-AMP on a nonverbal associative learning task.
Among the questions to be addressed in the present article are, How widespread is the use of prescription stimulants for cognitive enhancement? Who uses them, for what specific purposes? Given that nonmedical use of these substances is illegal, how are they obtained? Furthermore, do these substances actually enhance cognition? If so, what aspects of cognition do they enhance? Is everyone able to be enhanced, or are some groups of healthy individuals helped by these drugs and others not? The goal of this article is to address these questions by reviewing and synthesizing findings from the existing scientific literature. We begin with a brief overview of the psychopharmacology of the two most commonly used prescription stimulants.
Nootropics, also known as ‘brain boosters,’ ‘brain supplements’ or ‘cognitive enhancers’ are made up of a variety of artificial and natural compounds. These compounds help in enhancing the cognitive activities of the brain by regulating or altering the production of neurochemicals and neurotransmitters in the brain. It improves blood flow, stimulates neurogenesis (the process by which neurons are produced in the body by neural stem cells), enhances nerve growth rate, modifies synapses, and improves cell membrane fluidity. Thus, positive changes are created within your body, which helps you to function optimally irrespective of your current lifestyle and individual needs.
For the sake of organizing the review, we have divided the literature according to the general type of cognitive process being studied, with sections devoted to learning and to various kinds of executive function. Executive function is a broad and, some might say, vague concept that encompasses the processes by which individual perceptual, motoric, and mnemonic abilities are coordinated to enable appropriate, flexible task performance, especially in the face of distracting stimuli or alternative competing responses. Two major aspects of executive function are working memory and cognitive control, responsible for the maintenance of information in a short-term active state for guiding task performance and responsible for inhibition of irrelevant information or responses, respectively. A large enough literature exists on the effects of stimulants on these two executive abilities that separate sections are devoted to each. In addition, a final section includes studies of miscellaneous executive abilities including planning, fluency, and reasoning that have also been the subjects of published studies.

The placebos can be the usual pills filled with olive oil. The Nature’s Answer fish oil is lemon-flavored; it may be worth mixing in some lemon juice. In Kiecolt-Glaser et al 2011, anxiety was measured via the Beck Anxiety scale; the placebo mean was 1.2 on a standard deviation of 0.075, and the experimental mean was 0.93 on a standard deviation of 0.076. (These are all log-transformed covariates or something; I don’t know what that means, but if I naively plug those numbers into Cohen’s d, I get a very large effect: \frac{1.2 - 0.93}{0.076}=3.55.)

A Romanian psychologist and chemist named Corneliu Giurgea started using the word nootropic in the 1970s to refer to substances that improve brain function, but humans have always gravitated toward foods and chemicals that make us feel sharper, quicker, happier, and more content. Our brains use about 20 percent of our energy when our bodies are at rest (compared with 8 percent for apes), according to National Geographic, so our thinking ability is directly affected by the calories we’re taking in as well as by the nutrients in the foods we eat. Here are the nootropics we don’t even realize we’re using, and an expert take on how they work.
Similarly, Mehta et al 2000 noted that the positive effects of methylphenidate (40 mg) on spatial working memory performance were greatest in those volunteers with lower baseline working memory capacity. In a study of the effects of ginkgo biloba in healthy young adults, Stough et al 2001 found improved performance in the Trail-Making Test A only in the half with the lower verbal IQ.
Weyandt et al. (2009) Large public university undergraduates (N = 390) 7.5% (past 30 days) Highest rated reasons were to perform better on schoolwork, perform better on tests, and focus better in class 21.2% had occasionally been offered by other students; 9.8% occasionally or frequently have purchased from other students; 1.4% had sold to other students
An entirely different set of questions concerns cognitive enhancement in younger students, including elementary school and even preschool children. Some children can function adequately in school without stimulants but perform better with them; medicating such children could be considered a form of cognitive enhancement. How often does this occur? What are the roles and motives of parents, teachers, and pediatricians in these cases? These questions have been discussed elsewhere and deserve continued attention (Diller, 1996; Singh & Keller, 2010).

He recommends a 10mg dose, but sublingually. He mentions COLURACETAM’s taste is more akin to that of PRAMIRACETAM than OXIRACETAM, in that it tastes absolutely vile (not a surprise), so it is impossible to double-blind a sublingual administration - even if I knew of an inactive equally-vile-tasting substitute, I’m not sure I would subject myself to it. To compensate for ingesting the coluracetam, it would make sense to double the dose to 20mg (turning the 2g into <100 doses). Whether the effects persist over multiple days is not clear; I’ll assume it does not until someone says it does, since this makes things much easier.
This continued up to 1 AM, at which point I decided not to take a second armodafinil (why spend a second pill to gain what would likely be an unproductive set of 8 hours?) and finish up the experiment with some n-backing. My 5 rounds: 60/38/62/44/5023. This was surprising. Compare those scores with scores from several previous days: 39/42/44/40/20/28/36. I had estimated before the n-backing that my scores would be in the low-end of my usual performance (20-30%) since I had not slept for the past 41 hours, and instead, the lowest score was 38%. If one did not know the context, one might think I had discovered a good nootropic! Interesting evidence that armodafinil preserves at least one kind of mental performance.

The data from 2-back and 3-back tasks are more complex. Three studies examined performance in these more challenging tasks and found no effect of d-AMP on average performance (Mattay et al., 2000, 2003; Mintzer & Griffiths, 2007). However, in at least two of the studies, the overall null result reflected a mixture of reliably enhancing and impairing effects. Mattay et al. (2000) examined the performance of subjects with better and worse working memory capacity separately and found that subjects whose performance on placebo was low performed better on d-AMP, whereas subjects whose performance on placebo was high were unaffected by d-AMP on the 2-back and impaired on the 3-back tasks. Mattay et al. (2003) replicated this general pattern of data with subjects divided according to genotype. The specific gene of interest codes for the production of Catechol-O-methyltransferase (COMT), an enzyme that breaks down dopamine and norepinephrine. A common polymorphism determines the activity of the enzyme, with a substitution of methionine for valine at Codon 158 resulting in a less active form of COMT. The met allele is thus associated with less breakdown of dopamine and hence higher levels of synaptic dopamine than the val allele. Mattay et al. (2003) found that subjects who were homozygous for the val allele were able to perform the n-back faster with d-AMP; those homozygous for met were not helped by the drug and became significantly less accurate in the 3-back condition with d-AMP. In the case of the third study finding no overall effect, analyses of individual differences were not reported (Mintzer & Griffiths, 2007).
Not all drug users are searching for a chemical escape hatch. A newer and increasingly normalized drug culture is all about heightening one’s current relationship to reality—whether at work or school—by boosting the brain’s ability to think under stress, stay alert and productive for long hours, and keep track of large amounts of information. In the name of becoming sharper traders, medical interns, or coders, people are taking pills typically prescribed for conditions including ADHD, narcolepsy, and Alzheimer’s. Others down “stacks” of special “nootropic” supplements.
Nootropics (/noʊ.əˈtrɒpɪks/ noh-ə-TROP-iks) (colloquial: smart drugs and cognitive enhancers) are drugs, supplements, and other substances that may improve cognitive function, particularly executive functions, memory, creativity, or motivation, in healthy individuals.[1] While many substances are purported to improve cognition, research is at a preliminary stage as of 2018, and the effects of the majority of these agents are not fully determined.
×