Intrigued by old scientific results & many positive anecdotes since, I experimented with microdosing LSD - taking doses ~10μg, far below the level at which it causes its famous effects. At this level, the anecdotes claim the usual broad spectrum of positive effects on mood, depression, ability to do work, etc. After researching the matter a bit, I discovered that as far as I could tell, since the original experiment in the 1960s, no one had ever done a blind or even a randomized self-experiment on it.

Noopept shows a much greater affinity for certain receptor sites in the brain than racetams, allowing doses as small as 10-30mg to provide increased focus, improved logical thinking function, enhanced short and long-term memory functions, and increased learning ability including improved recall. In addition, users have reported a subtle psychostimulatory effect.
A Romanian psychologist and chemist named Corneliu Giurgea started using the word nootropic in the 1970s to refer to substances that improve brain function, but humans have always gravitated toward foods and chemicals that make us feel sharper, quicker, happier, and more content. Our brains use about 20 percent of our energy when our bodies are at rest (compared with 8 percent for apes), according to National Geographic, so our thinking ability is directly affected by the calories we’re taking in as well as by the nutrients in the foods we eat. Here are the nootropics we don’t even realize we’re using, and an expert take on how they work.
After 7 days, I ordered a kg of choline bitartrate from Bulk Powders. Choline is standard among piracetam-users because it is pretty universally supported by anecdotes about piracetam headaches, has support in rat/mice experiments27, and also some human-related research. So I figured I couldn’t fairly test piracetam without some regular choline - the eggs might not be enough, might be the wrong kind, etc. It has a quite distinctly fishy smell, but the actual taste is more citrus-y, and it seems to neutralize the piracetam taste in tea (which makes things much easier for me).
At small effects like d=0.07, a nontrivial chance of negative effects, and an unknown level of placebo effects (this was non-blinded, which could account for any residual effects), this strongly implies that LLLT is not doing anything for me worth bothering with. I was pretty skeptical of LLLT in the first place, and if 167 days can’t turn up anything noticeable, I don’t think I’ll be continuing with LLLT usage and will be giving away my LED set. (Should any experimental studies of LLLT for cognitive enhancement in healthy people surface with large quantitative effects - as opposed to a handful of qualitative case studies about brain-damaged people - and I decide to give LLLT another try, I can always just buy another set of LEDs: it’s only ~$15, after all.)

The concept of neuroenhancement and the use of substances to improve cognitive functioning in healthy individuals, is certainly not a new one. In fact, one of the first cognitive enhancement drugs, Piracetam, was developed over fifty years ago by psychologist and chemist C.C. Giurgea. Although he did not know the exact mechanism, Giurgia believed the drug boosted brain power and so began his exploration into "smart pills", or nootropics, a term he coined from the Greek nous, meaning "mind," and trepein, meaning "to bend.  
After 7 days, I ordered a kg of choline bitartrate from Bulk Powders. Choline is standard among piracetam-users because it is pretty universally supported by anecdotes about piracetam headaches, has support in rat/mice experiments27, and also some human-related research. So I figured I couldn’t fairly test piracetam without some regular choline - the eggs might not be enough, might be the wrong kind, etc. It has a quite distinctly fishy smell, but the actual taste is more citrus-y, and it seems to neutralize the piracetam taste in tea (which makes things much easier for me).
If stimulants truly enhance cognition but do so to only a small degree, this raises the question of whether small effects are of practical use in the real world. Under some circumstances, the answer would undoubtedly be yes. Success in academic and occupational competitions often hinges on the difference between being at the top or merely near the top. A scholarship or a promotion that can go to only one person will not benefit the runner-up at all. Hence, even a small edge in the competition can be important.
Many of the most popular “smart drugs” (Piracetam, Sulbutiamine, Ginkgo Biloba, etc.) have been around for decades or even millenia but are still known only in medical circles or among esoteric practicioners of herbal medicine. Why is this? If these compounds have proven cognitive benefits, why are they not ubiquitous? How come every grade-school child gets fluoride for the development of their teeth (despite fluoride’s being a known neurotoxin) but not, say, Piracetam for the development of their brains? Why does the nightly news slant stories to appeal more to a fear-of-change than the promise of a richer cognitive future?

Research on animals has shown that intermittent fasting — limiting caloric intake at least two days a week — can help improve neural connections in the hippocampus and protect against the accumulation of plaque, a protein prevalent in the brains of people with Alzheimer’s disease. Research has also shown that intermittent fasting helped reduce anxiety in mice.
Harrisburg, NC -- (SBWIRE) -- 02/18/2019 -- Global Smart Pills Technology Market - Segmented by Technology, Disease Indication, and Geography - Growth, Trends, and Forecast (2019 - 2023) The smart pill is a wireless capsule that can be swallowed, and with the help of a receiver (worn by patients) and software that analyzes the pictures captured by the smart pill, the physician is effectively able to examine the gastrointestinal tract. Gastrointestinal disorders have become very common, but recently, there has been increasing incidence of colorectal cancer, inflammatory bowel disease, and Crohns disease as well.

What worries me about amphetamine is its addictive potential, and the fact that it can cause stress and anxiety. Research says it’s only slightly likely to cause addiction in people with ADHD, [7] but we don’t know much about its addictive potential in healthy adults. We all know the addictive potential of methamphetamine, and amphetamine is closely related enough to make me nervous about so many people giving it to their children. Amphetamines cause withdrawal symptoms, so the potential for addiction is there.

The concept of neuroenhancement and the use of substances to improve cognitive functioning in healthy individuals, is certainly not a new one. In fact, one of the first cognitive enhancement drugs, Piracetam, was developed over fifty years ago by psychologist and chemist C.C. Giurgea. Although he did not know the exact mechanism, Giurgia believed the drug boosted brain power and so began his exploration into "smart pills", or nootropics, a term he coined from the Greek nous, meaning "mind," and trepein, meaning "to bend.  


The miniaturization of electronic components has been crucial to smart pill design. As cloud computing and wireless communication platforms are integrated into the health care system, the use of smart pills for monitoring vital signs and medication compliance is likely to increase. In the long term, smart pills are expected to be an integral component of remote patient monitoring and telemedicine. As the call for noninvasive point-of-care testing increases, smart pills will become mainstream devices.

Amphetamine – systematic reviews and meta-analyses report that low-dose amphetamine improved cognitive functions (e.g., inhibitory control, episodic memory, working memory, and aspects of attention) in healthy people and in individuals with ADHD.[21][22][23][25] A 2014 systematic review noted that low doses of amphetamine also improved memory consolidation, in turn leading to improved recall of information in non-ADHD youth.[23] It also improves task saliency (motivation to perform a task) and performance on tedious tasks that required a high degree of effort.[22][24][25]

×