Cost-wise, the gum itself (~$5) is an irrelevant sunk cost and the DNB something I ought to be doing anyway. If the results are negative (which I’ll define as d<0.2), I may well drop nicotine entirely since I have no reason to expect other forms (patches) or higher doses (2mg+) to create new benefits. This would save me an annual expense of ~$40 with a net present value of <820 ($); even if we count the time-value of the 20 minutes for the 5 DNB rounds over 48 days (0.2 \times 48 \times 7.25 = 70), it’s still a clear profit to run a convincing experiment.
Null results are generally less likely to be published. Consistent with the operation of such a bias in the present literature, the null results found in our survey were invariably included in articles reporting the results of multiple tasks or multiple measures of a single task; published single-task studies with exclusively behavioral measures all found enhancement. This suggests that some single-task studies with null results have gone unreported. The present mixed results are consistent with those of other recent reviews that included data from normal subjects, using more limited sets of tasks or medications (Advokat, 2010; Chamberlain et al., 2010; Repantis, Schlattmann, Laisney, & Heuser, 2010).
Following up on the promising but unrandomized pilot, I began randomizing my LLLT usage since I worried that more productive days were causing use rather than vice-versa. I began on 2 August 2014, and the last day was 3 March 2015 (n=167); this was twice the sample size I thought I needed, and I stopped, as before, as part of cleaning up (I wanted to know whether to get rid of it or not). The procedure was simple: by noon, I flipped a bit and either did or did not use my LED device; if I was distracted or didn’t get around to randomization by noon, I skipped the day. This was an unblinded experiment because finding a randomized on/off switch is tricky/expensive and it was easier to just start the experiment already. The question is simple too: controlling for the simultaneous blind magnesium experiment & my rare nicotine use (I did not use modafinil during this period or anything else I expect to have major influence), is the pilot correlation of d=0.455 on my daily self-ratings borne out by the experiment?
In this large population-based cohort, we saw consistent robust associations between cola consumption and low BMD in women. The consistency of pattern across cola types and after adjustment for potential confounding variables, including calcium intake, supports the likelihood that this is not due to displacement of milk or other healthy beverages in the diet. The major differences between cola and other carbonated beverages are caffeine, phosphoric acid, and cola extract. Although caffeine likely contributes to lower BMD, the result also observed for decaffeinated cola, the lack of difference in total caffeine intake across cola intake groups, and the lack of attenuation after adjustment for caffeine content suggest that caffeine does not explain these results. A deleterious effect of phosphoric acid has been proposed (26). Cola beverages contain phosphoric acid, whereas other carbonated soft drinks (with some exceptions) do not.
70 pairs is 140 blocks; we can drop to 36 pairs or 72 blocks if we accept a power of 0.5/50% chance of reaching significance. (Or we could economize by hoping that the effect size is not 3.5 but maybe twice the pessimistic guess; a d=0.5 at 50% power requires only 12 pairs of 24 blocks.) 70 pairs of blocks of 2 weeks, with 2 pills a day requires (70 \times 2) \times (2 \times 7) \times 2 = 3920 pills. I don’t even have that many empty pills! I have <500; 500 would supply 250 days, which would yield 18 2-week blocks which could give 9 pairs. 9 pairs would give me a power of:
I have elsewhere remarked on the apparent lack of benefit to taking multivitamins and the possible harm; so one might well wonder about a specific vitamin like vitamin D. However, a multivitamin is not vitamin D, so it’s no surprise that they might do different things. If a multivitamin had no vitamin D in it, or if it had vitamin D in different doses, or if it had substances which interacted with vitamin D (such as calcium), or if it had substances which had negative effects which outweigh the positive (such as vitamin A?), we could well expect differing results. In this case, all of those are true to varying extents. Some multivitamins I’ve had contained no vitamin D. The last multivitamin I was taking both contains vitamins used in the negative trials and also some calcium; the listed vitamin D dosage was a trivial ~400IU, while I take >10x as much now (5000IU).
In 3, you’re considering adding a new supplement, not stopping a supplement you already use. The I don’t try Adderall case has value $0, the Adderall fails case is worth -$40 (assuming you only bought 10 pills, and this number should be increased by your analysis time and a weighted cost for potential permanent side effects), and the Adderall succeeds case is worth $X-40-4099, where $X is the discounted lifetime value of the increased productivity due to Adderall, minus any discounted long-term side effect costs. If you estimate Adderall will work with p=.5, then you should try out Adderall if you estimate that 0.5 \times (X-4179) > 0 ~> $X>4179$. (Adderall working or not isn’t binary, and so you might be more comfortable breaking down the various how effective Adderall is cases when eliciting X, by coming up with different levels it could work at, their values, and then using a weighted sum to get X. This can also give you a better target with your experiment- this needs to show a benefit of at least Y from Adderall for it to be worth the cost, and I’ve designed it so it has a reasonable chance of showing that.)
Use of prescription stimulants by normal healthy individuals to enhance cognition is said to be on the rise. Who is using these medications for cognitive enhancement, and how prevalent is this practice? Do prescription stimulants in fact enhance cognition for normal healthy people? We review the epidemiological and cognitive neuroscience literatures in search of answers to these questions. Epidemiological issues addressed include the prevalence of nonmedical stimulant use, user demographics, methods by which users obtain prescription stimulants, and motivations for use. Cognitive neuroscience issues addressed include the effects of prescription stimulants on learning and executive function, as well as the task and individual variables associated with these effects. Little is known about the prevalence of prescription stimulant use for cognitive enhancement outside of student populations. Among college students, estimates of use vary widely but, taken together, suggest that the practice is commonplace. The cognitive effects of stimulants on normal healthy people cannot yet be characterized definitively, despite the volume of research that has been carried out on these issues. Published evidence suggests that declarative memory can be improved by stimulants, with some evidence consistent with enhanced consolidation of memories. Effects on the executive functions of working memory and cognitive control are less reliable but have been found for at least some individuals on some tasks. In closing, we enumerate the many outstanding questions that remain to be addressed by future research and also identify obstacles facing this research.
Methylphenidate – a benzylpiperidine that had cognitive effects (e.g., working memory, episodic memory, and inhibitory control, aspects of attention, and planning latency) in healthy people.[21][22][23] It also may improve task saliency and performance on tedious tasks.[25] At above optimal doses, methylphenidate had off–target effects that decreased learning.[26]