Following up on the promising but unrandomized pilot, I began randomizing my LLLT usage since I worried that more productive days were causing use rather than vice-versa. I began on 2 August 2014, and the last day was 3 March 2015 (n=167); this was twice the sample size I thought I needed, and I stopped, as before, as part of cleaning up (I wanted to know whether to get rid of it or not). The procedure was simple: by noon, I flipped a bit and either did or did not use my LED device; if I was distracted or didn’t get around to randomization by noon, I skipped the day. This was an unblinded experiment because finding a randomized on/off switch is tricky/expensive and it was easier to just start the experiment already. The question is simple too: controlling for the simultaneous blind magnesium experiment & my rare nicotine use (I did not use modafinil during this period or anything else I expect to have major influence), is the pilot correlation of d=0.455 on my daily self-ratings borne out by the experiment?
Like caffeine, nicotine tolerates rapidly and addiction can develop, after which the apparent performance boosts may only represent a return to baseline after withdrawal; so nicotine as a stimulant should be used judiciously, perhaps roughly as frequent as modafinil. Another problem is that nicotine has a half-life of merely 1-2 hours, making regular dosing a requirement. There is also some elevated heart-rate/blood-pressure often associated with nicotine, which may be a concern. (Possible alternatives to nicotine include cytisine, 2’-methylnicotine, GTS-21, galantamine, Varenicline, WAY-317,538, EVP-6124, and Wellbutrin, but none have emerged as clearly superior.)
Many of the positive effects of cognitive enhancers have been seen in experiments using rats. For example, scientists can train rats on a specific test, such as maze running, and then see if the "smart drug" can improve the rats' performance. It is difficult to see how many of these data can be applied to human learning and memory. For example, what if the "smart drug" made the rat hungry? Wouldn't a hungry rat run faster in the maze to receive a food reward than a non-hungry rat? Maybe the rat did not get any "smarter" and did not have any improved memory. Perhaps the rat ran faster simply because it was hungrier. Therefore, it was the rat's motivation to run the maze, not its increased cognitive ability that affected the performance. Thus, it is important to be very careful when interpreting changes observed in these types of animal learning and memory experiments.
…Four subjects correctly stated when they received nicotine, five subjects were unsure, and the remaining two stated incorrectly which treatment they received on each occasion of testing. These numbers are sufficiently close to chance expectation that even the four subjects whose statements corresponded to the treatments received may have been guessing.
I noticed what may have been an effect on my dual n-back scores; the difference is not large (▃▆▃▃▂▂▂▂▄▅▂▄▂▃▅▃▄ vs ▃▄▂▂▃▅▂▂▄▁▄▃▅▂▃▂▄▂▁▇▃▂▂▄▄▃▃▂▃▂▂▂▃▄▄▃▆▄▄▂▃▄▃▁▂▂▂▃▂▄▂▁▁▂▄▁▃▂▄) and appears mostly in the averages - Toomim’s quick two-sample t-test gave p=0.23, although a another analysis gives p=0.138112. One issue with this before-after quasi-experiment is that one would expect my scores to slowly rise over time and hence a fish oil after would yield a score increase - the 3.2 point difference could be attributable to that, placebo effect, or random variation etc. But an accidentally noticed effect (d=0.28) is a promising start. An experiment may be worth doing given that fish oil does cost a fair bit each year: randomized blocks permitting an fish-oil-then-placebo comparison would take care of the first issue, and then blinding (olive oil capsules versus fish oil capsules?) would take care of the placebo worry.

12:18 PM. (There are/were just 2 Adderall left now.) I manage to spend almost the entire afternoon single-mindedly concentrating on transcribing two parts of a 1996 Toshio Okada interview (it was very long, and the formatting more challenging than expected), which is strong evidence for Adderall, although I did feel fairly hungry while doing it. I don’t go to bed until midnight and & sleep very poorly - despite taking triple my usual melatonin! Inasmuch as I’m already fairly sure that Adderall damages my sleep, this makes me even more confident (>80%). When I grumpily crawl out of bed and check: it’s Adderall. (One Adderall left.)
Dopaminergics are smart drug substances that affect levels of dopamine within the brain. Dopamine is a major neurotransmitter, responsible for the good feelings and biochemical positive feedback from behaviors for which our biology naturally rewards us: tasty food, sex, positive social relationships, etc. Use of dopaminergic smart drugs promotes attention and alertness by either increasing the efficacy of dopamine within the brain, or inhibiting the enzymes that break dopamine down. Examples of popular dopaminergic smart drug drugs include Yohimbe, selegiline and L-Tyrosine.
Aniracetam is known as one of the smart pills with the widest array of uses. From benefits for dementia patients and memory boost in adults with healthy brains, to the promotion of brain damage recovery. It also improves the quality of sleep, what affects the overall increase in focus during the day. Because it supports the production of dopamine and serotonin, it elevates our mood and helps fight depression and anxiety.
COGNITUNE is for informational purposes only, and should not be considered medical advice, diagnosis or treatment recommendations. Always consult with your doctor or primary care physician before using any nutraceuticals, dietary supplements, or prescription medications. Seeking a proper diagnosis from a certified medical professional is vital for your health.
There are hundreds of cognitive enhancing pills (so called smart pills) on the market that simply do NOT work! With each of them claiming they are the best, how can you find the brain enhancing supplements that are both safe and effective? Our top brain enhancing pills have been picked by sorting and ranking the top brain enhancing products yourself. Our ratings are based on the following criteria.
Minnesota-based Medtronic offers a U.S. Food and Drug Administration (FDA)-cleared smart pill called PillCam COLON, which provides clear visualization of the colon and is complementary to colonoscopy. It is an alternative for patients who refuse invasive colon exams, have bleeding or sedation risks or inflammatory bowel disease, or have had a previous incomplete colonoscopy. PillCam COLON allows  more  people  to  get  screened  for  colorectal  cancer with  a  minimally  invasive, radiation-free option. The research focus for WCEs is on effective localization, steering and control of capsules. Device development relies on leveraging applied science and technologies for better system performance, rather than completely reengineering the pill.
Harrisburg, NC -- (SBWIRE) -- 02/18/2019 -- Global Smart Pills Technology Market - Segmented by Technology, Disease Indication, and Geography - Growth, Trends, and Forecast (2019 - 2023) The smart pill is a wireless capsule that can be swallowed, and with the help of a receiver (worn by patients) and software that analyzes the pictures captured by the smart pill, the physician is effectively able to examine the gastrointestinal tract. Gastrointestinal disorders have become very common, but recently, there has been increasing incidence of colorectal cancer, inflammatory bowel disease, and Crohns disease as well.
I took the first pill at 12:48 pm. 1:18, still nothing really - head is a little foggy if anything. later noticed a steady sort of mental energy lasting for hours (got a good deal of reading and programming done) until my midnight walk, when I still felt alert, and had trouble sleeping. (Zeo reported a ZQ of 100, but a full 18 minutes awake, 2 or 3 times the usual amount.)
“I cannot overstate how grateful I am to Cavin for having published this book (and launched his podcast) before I needed it. I am 3.5 months out from a concussion and struggling to recover that final 25% or so of my brain and function. I fully believe that diet and lifestyle can help heal many of our ills, and this book gives me a path forward right now. Gavin’s story is inspiring, and his book is well-researched and clearly written. I am a food geek and so innately understand a lot of his advice — I’m not intimidated by the thought of drastically changing my diet because I know well how to shop and cook for myself — but I so appreciate how his gentle approach and stories about his own struggles with a new diet might help people who would find it all daunting. I am in week 2 of following his advice (and also Dr. Titus Chiu’s BrainSave plan). It’s not an instantaneous miracle cure, but I do feel better in several ways that just might be related to this diet.”
Last spring, 100 people showed up at a Peak Performance event where psychedelic psychologist James Fadiman said the key to unleashing the cognition-enhancing effects of LSD — which he listed as less anxiety, better focus, improved sleep, greater creativity — was all in the dosage. He recommended a tenth of a “party dose” — enough to give you “the glow” and enhance your cognitive powers without “the trip.”
Alpha Lipoic Acid is a vitamin-like chemical filled with antioxidant properties, that naturally occur in broccoli, spinach, yeast, kidney, liver, and potatoes. The compound is generally prescribed to patients suffering from nerve-related symptoms of diabetes because it helps in preventing damage to the nerve cells and improves the functioning of neurons. It can be termed as one of the best memory boosting supplements.
As mentioned earlier, cognitive control is needed not only for inhibiting actions, but also for shifting from one kind of action or mental set to another. The WCST taxes cognitive control by requiring the subject to shift from sorting cards by one dimension (e.g., shape) to another (e.g., color); failures of cognitive control in this task are manifest as perseverative errors in which subjects continue sorting by the previously successful dimension. Three studies included the WCST in their investigations of the effects of d-AMP on cognition (Fleming et al., 1995; Mattay et al., 1996, 2003), and none revealed overall effects of facilitation. However, Mattay et al. (2003) subdivided their subjects according to COMT genotype and found differences in both placebo performance and effects of the drug. Subjects who were homozygous for the val allele (associated with lower prefrontal dopamine activity) made more perseverative errors on placebo than other subjects and improved significantly with d-AMP. Subjects who were homozygous for the met allele performed best on placebo and made more errors on d-AMP.
The evidence? Ritalin is FDA-approved to treat ADHD. It has also been shown to help patients with traumatic brain injury concentrate for longer periods, but does not improve memory in those patients, according to a 2016 meta-analysis of several trials. A study published in 2012 found that low doses of methylphenidate improved cognitive performance, including working memory, in healthy adult volunteers, but high doses impaired cognitive performance and a person’s ability to focus. (Since the brains of teens have been found to be more sensitive to the drug’s effect, it’s possible that methylphenidate in lower doses could have adverse effects on working memory and cognitive functions.)
The chemicals he takes, dubbed nootropics from the Greek “noos” for “mind”, are intended to safely improve cognitive functioning. They must not be harmful, have significant side-effects or be addictive. That means well-known “smart drugs” such as the prescription-only stimulants Adderall and Ritalin, popular with swotting university students, are out. What’s left under the nootropic umbrella is a dizzying array of over-the-counter supplements, prescription drugs and unclassified research chemicals, some of which are being trialled in older people with fading cognition.
Analgesics Anesthetics General Local Anorectics Anti-ADHD agents Antiaddictives Anticonvulsants Antidementia agents Antidepressants Antimigraine agents Antiparkinson agents Antipsychotics Anxiolytics Depressants Entactogens Entheogens Euphoriants Hallucinogens Psychedelics Dissociatives Deliriants Hypnotics/Sedatives Mood Stabilizers Neuroprotectives Nootropics Neurotoxins Orexigenics Serenics Stimulants Wakefulness-promoting agents
×