My first impression of ~1g around 12:30PM was that while I do not feel like running around, within an hour I did feel like the brain fog was lighter than before. The effect wasn’t dramatic, so I can’t be very confident. Operationalizing brain fog for an experiment might be hard: it doesn’t necessarily feel like I would do better on dual n-back. I took 2 smaller doses 3 and 6 hours later, to no further effect. Over the following weeks and months, I continued to randomly alternate between potassium & non-potassium days. I noticed no effects other than sleep problems.
Similarly, Mehta et al 2000 noted that the positive effects of methylphenidate (40 mg) on spatial working memory performance were greatest in those volunteers with lower baseline working memory capacity. In a study of the effects of ginkgo biloba in healthy young adults, Stough et al 2001 found improved performance in the Trail-Making Test A only in the half with the lower verbal IQ.

Whole pill at 3 AM. I spend the entire morning and afternoon typing up a transcript of Earth in My Window. I tried taking a nap around 10 AM, but during the hour I was down, I had <5m of light sleep, the Zeo said. After I finished the transcript (~16,600 words with formatting), I was completely pooped and watched a bunch of Mobile Suit Gundam episodes, then I did Mnemosyne. The rest of the night was nothing to write home about either - some reading, movie watching, etc. Next time I will go back to split-doses and avoid typing up 110kB of text. On the positive side, this is the first trial I had available the average daily grade Mnemosyne 2.0 plugin. The daily averages all are 3-point-something (peaking at 3.89 and flooring at 3.59), so just graphing the past 2 weeks, the modafinil day, and recovery days: ▅█▅▆▄▆▄▃▅▄▁▄▄ ▁ ▂▄▄█. Not an impressive performance but there was a previous non-modafinil day just as bad, and I’m not too sure how important a metric this is; I must see whether future trials show similar underperformance. Nights: 11:29; 9:22; 8:25; 8:41.
Took pill #6 at 12:35 PM. Hard to be sure. I ultimately decided that it was Adderall because I didn’t have as much trouble as I normally would in focusing on reading and then finishing my novel (Surface Detail) despite my family watching a movie, though I didn’t notice any lack of appetite. Call this one 60-70% Adderall. I check the next evening and it was Adderall.
Even if you eat foods that contain these nutrients, Hogan says their beneficial effects are in many ways cumulative—meaning the brain perks don’t emerge unless you’ve been eating them for long periods of time. Swallowing more of these brain-enhancing compounds at or after middle-age “may be beyond the critical period” when they’re able to confer cognitive enhancements, he says.

The search to find more effective drugs to increase mental ability and intelligence capacity with neither toxicity nor serious side effects continues. But there are limitations. Although the ingredients may be separately known to have cognition-enhancing effects, randomized controlled trials of the combined effects of cognitive enhancement compounds are sparse.
I’ve been actively benefitting from nootropics since 1997, when I was struggling with cognitive performance and ordered almost $1000 worth of smart drugs from Europe (the only place where you could get them at the time). I remember opening the unmarked brown package and wondering whether the pharmaceuticals and natural substances would really enhance my brain.
Hall, Irwin, Bowman, Frankenberger, & Jewett (2005) Large public university undergraduates (N = 379) 13.7% (lifetime) 27%: use during finals week; 12%: use when party; 15.4%: use before tests; 14%: believe stimulants have a positive effect on academic achievement in the long run M = 2.06 (SD = 1.19) purchased stimulants from other students; M = 2.81 (SD = 1.40) have been given stimulants by other studentsb
Do note that this isn’t an extensive list by any means, there are plenty more ‘smart drugs’ out there purported to help focus and concentration. Most (if not all) are restricted under the Psychoactive Substances Act, meaning they’re largely illegal to sell. We strongly recommend against using these products off-label, as they can be dangerous both due to side effects and their lack of regulation on the grey/black market.
Long-term use is different, and research-backed efficacy is another question altogether. The nootropic market is not regulated, so a company can make claims without getting in trouble for making those claims because they’re not technically selling a drug. This is why it’s important to look for well-known brands and standardized nootropic herbs where it’s easier to calculate the suggested dose and be fairly confident about what you’re taking.
QUALITY : They use pure and high quality Ingredients and are the ONLY ones we found that had a comprehensive formula including the top 5 most proven ingredients: DHA Omega 3, Huperzine A, Phosphatidylserine, Bacopin and N-Acetyl L-Tyrosine. Thrive Natural’s Super Brain Renew is fortified with just the right ingredients to help your body fully digest the active ingredients. No other brand came close to their comprehensive formula of 39 proven ingredients. The “essential 5” are the most important elements to help improve your memory, concentration, focus, energy, and mental clarity. But, what also makes them stand out above all the rest was that they have several supporting vitamins and nutrients to help optimize brain and memory function. A critical factor for us is that this company does not use fillers, binders or synthetics in their product. We love the fact that their capsules are vegetarian, which is a nice bonus for health conscious consumers.
But when aficionados talk about nootropics, they usually refer to substances that have supposedly few side effects and low toxicity. Most often they mean piracetam, which Giurgea first synthesized in 1964 and which is approved for therapeutic use in dozens of countries for use in adults and the elderly. Not so in the United States, however, where officially it can be sold only for research purposes.
2 break days later, I took the quarter-pill at 11:22 PM. I had discovered I had for years physically possessed a very long interview not available online, and transcribing that seemed like a good way to use up a few hours. I did some reading, some Mnemosyne, and started it around midnight, finishing around 2:30 AM. There seemed a mental dip around 30 minutes after the armodafinil, but then things really picked up and I made very good progress transcribing the final draft of 9000 words in that period. (In comparison, The Conscience of the Otaking parts 2 & 4 were much easier to read than the tiny font of the RahXephon booklet, took perhaps 3 hours, and totaled only 6500 words. The nicotine is probably also to thank.) By 3:40 AM, my writing seems to be clumsier and my mind fogged. Began DNB at 3:50: 61/53/44. Went to bed at 4:05, fell asleep in 16 minutes, slept for 3:56. Waking up was easier and I felt better, so the extra hour seemed to help.
Finally, it’s not clear that caffeine results in performance gains after long-term use; homeostasis/tolerance is a concern for all stimulants, but especially for caffeine. It is plausible that all caffeine consumption does for the long-term chronic user is restore performance to baseline. (Imagine someone waking up and drinking coffee, and their performance improves - well, so would the performance of a non-addict who is also slowly waking up!) See for example, James & Rogers 2005, Sigmon et al 2009, and Rogers et al 2010. A cross-section of thousands of participants in the Cambridge brain-training study found caffeine intake showed negligible effect sizes for mean and component scores (participants were not told to use caffeine, but the training was recreational & difficult, so one expects some difference).
Several studies have assessed the effect of MPH and d-AMP on tasks tapping various other aspects of spatial working memory. Three used the spatial working memory task from the CANTAB battery of neuropsychological tests (Sahakian & Owen, 1992). In this task, subjects search for a target at different locations on a screen. Subjects are told that locations containing a target in previous trials will not contain a target in future trials. Efficient performance therefore requires remembering and avoiding these locations in addition to remembering and avoiding locations already searched within a trial. Mehta et al. (2000) found evidence of greater accuracy with MPH, and Elliott et al. (1997) found a trend for the same. In Mehta et al.’s study, this effect depended on subjects’ working memory ability: the lower a subject’s score on placebo, the greater the improvement on MPH. In Elliott et al.’s study, MPH enhanced performance for the group of subjects who received the placebo first and made little difference for the other group. The reason for this difference is unclear, but as mentioned above, this may reflect ability differences between the groups. More recently, Clatworthy et al. (2009) undertook a positron emission tomography (PET) study of MPH effects on two tasks, one of which was the CANTAB spatial working memory task. They failed to find consistent effects of MPH on working memory performance but did find a systematic relation between the performance effect of the drug in each individual and its effect on individuals’ dopamine activity in the ventral striatum.
Recent developments include biosensor-equipped smart pills that sense the appropriate environment and location to release pharmacological agents. Medimetrics (Eindhoven, Netherlands) has developed a pill called IntelliCap with drug reservoir, pH and temperature sensors that release drugs to a defined region of the gastrointestinal tract. This device is CE marked and is in early stages of clinical trials for FDA approval. Recently, Google announced its intent to invest and innovate in this space.

Remembering what Wedrifid told me, I decided to start with a quarter of a piece (~1mg). The gum was pretty tasteless, which ought to make blinding easier. The effects were noticeable around 10 minutes - greater energy verging on jitteriness, much faster typing, and apparent general quickening of thought. Like a more pleasant caffeine. While testing my typing speed in Amphetype, my speed seemed to go up >=5 WPM, even after the time penalties for correcting the increased mistakes; I also did twice the usual number without feeling especially tired. A second dose was similar, and the third dose was at 10 PM before playing Ninja Gaiden II seemed to stop the usual exhaustion I feel after playing through a level or so. (It’s a tough game, which I have yet to master like Ninja Gaiden Black.) Returning to the previous concern about sleep problems, though I went to bed at 11:45 PM, it still took 28 minutes to fall sleep (compared to my more usual 10-20 minute range); the next day I use 2mg from 7-8PM while driving, going to bed at midnight, where my sleep latency is a more reasonable 14 minutes. I then skipped for 3 days to see whether any cravings would pop up (they didn’t). I subsequently used 1mg every few days for driving or Ninja Gaiden II, and while there were no cravings or other side-effects, the stimulation definitely seemed to get weaker - benefits seemed to still exist, but I could no longer describe any considerable energy or jitteriness.

“It is important to note that Abilify MyCite’s prescribing information (labeling) notes that the ability of the product to improve patient compliance with their treatment regimen has not been shown. Abilify MyCite should not be used to track drug ingestion in “real-time” or during an emergency because detection may be delayed or may not occur,” the FDA said in a statement.

(I was more than a little nonplussed when the mushroom seller included a little pamphlet educating one about how papaya leaves can cure cancer, and how I’m shortening my life by decades by not eating many raw fruits & vegetables. There were some studies cited, but usually for points disconnected from any actual curing or longevity-inducing results.)

So, I have started a randomized experiment; should take 2 months, given the size of the correlation. If that turns out to be successful too, I’ll have to look into methods of blinding - for example, some sort of electronic doohickey which turns on randomly half the time and which records whether it’s on somewhere one can’t see. (Then for the experiment, one hooks up the LED, turns the doohickey on, and applies directly to forehead, checking the next morning to see whether it was really on or off).
The prefrontal cortex at the front of the brain is the zone that produces such representations, and it is the focus of Arnsten’s work. “The way the prefrontal cortex creates these representations is by having pyramidal cells – they’re actually shaped like little pyramids – exciting each other. They keep each other firing, even when there’s no information coming in from the environment to stimulate the circuits,” she explains.
Among the questions to be addressed in the present article are, How widespread is the use of prescription stimulants for cognitive enhancement? Who uses them, for what specific purposes? Given that nonmedical use of these substances is illegal, how are they obtained? Furthermore, do these substances actually enhance cognition? If so, what aspects of cognition do they enhance? Is everyone able to be enhanced, or are some groups of healthy individuals helped by these drugs and others not? The goal of this article is to address these questions by reviewing and synthesizing findings from the existing scientific literature. We begin with a brief overview of the psychopharmacology of the two most commonly used prescription stimulants.
Fortunately, there are some performance-enhancing habits that have held up under rigorous scientific scrutiny. They are free, and easy to pronounce. Unfortunately, they are also the habits you were perhaps hoping to forego by using nootropics instead. “Of all the things that are supposed to be ‘good for the brain,’” says Stanford neurology professor Sharon Sha, “there is more evidence for exercise than anything else.” Next time you’re facing a long day, you could take a pill and see what happens.
Nor am I sure how important the results are - partway through, I haven’t noticed anything bad, at least, from taking Noopept. And any effect is going to be subtle: people seem to think that 10mg is too small for an ingested rather than sublingual dose and I should be taking twice as much, and Noopept’s claimed to be a chronic gradual sort of thing, with less of an acute effect. If the effect size is positive, regardless of statistical-significance, I’ll probably think about doing a bigger real self-experiment (more days blocked into weeks or months & 20mg dose)
If smart drugs are the synthetic cognitive enhancers, sleep, nutrition and exercise are the "natural" ones. But the appeal of drugs like Ritalin and modafinil lies in their purported ability to enhance brain function beyond the norm. Indeed, at school or in the workplace, a pill that enhanced the ability to acquire and retain information would be particularly useful when it came to revising and learning lecture material. But despite their increasing popularity, do prescription stimulants actually enhance cognition in healthy users?
Looking at the prices, the overwhelming expense is for modafinil. It’s a powerful stimulant - possibly the single most effective ingredient in the list - but dang expensive. Worse, there’s anecdotal evidence that one can develop tolerance to modafinil, so we might be wasting a great deal of money on it. (And for me, modafinil isn’t even very useful in the daytime: I can’t even notice it.) If we drop it, the cost drops by a full $800 from $1761 to $961 (almost halving) and to $0.96 per day. A remarkable difference, and if one were genetically insensitive to modafinil, one would definitely want to remove it.

One of the most widely known classes of smart drugs on the market, Racetams, have a long history of use and a lot of evidence of their effectiveness. They hasten the chemical exchange between brain cells, directly benefiting our mental clarity and learning process. They are generally not controlled substances and can be purchased without a prescription in a lot of locations globally.
For instance, they point to the U.S. Army's use of stimulants for soldiers to stave off sleep and to stay sharp. But the Army cares little about the long-term health effects of soldiers, who come home scarred physically or mentally, if they come home at all. It's a risk-benefit decision for the Army, and in a life-or-death situation, stimulants help.
If you could take a pill that would help you study and get better grades, would you? Off-label use of “smart drugs” – pharmaceuticals meant to treat disorders like ADHD, narcolepsy, and Alzheimer’s – are becoming increasingly popular among college students hoping to get ahead, by helping them to stay focused and alert for longer periods of time. But is this cheating? Should their use as cognitive enhancers be approved by the FDA, the medical community, and society at large? Do the benefits outweigh the risks?
If you could take a drug to boost your brainpower, would you? This question, faced by Bradley Cooper’s character in the big-budget movie Limitless, is now facing students who are frantically revising for exams. Although they are nowhere near the strength of the drug shown in the film, mind-enhancing drugs are already on the pharmacy shelves, and many people are finding the promise of sharper thinking through chemistry highly seductive.

Use of prescription stimulants by normal healthy individuals to enhance cognition is said to be on the rise. Who is using these medications for cognitive enhancement, and how prevalent is this practice? Do prescription stimulants in fact enhance cognition for normal healthy people? We review the epidemiological and cognitive neuroscience literatures in search of answers to these questions. Epidemiological issues addressed include the prevalence of nonmedical stimulant use, user demographics, methods by which users obtain prescription stimulants, and motivations for use. Cognitive neuroscience issues addressed include the effects of prescription stimulants on learning and executive function, as well as the task and individual variables associated with these effects. Little is known about the prevalence of prescription stimulant use for cognitive enhancement outside of student populations. Among college students, estimates of use vary widely but, taken together, suggest that the practice is commonplace. The cognitive effects of stimulants on normal healthy people cannot yet be characterized definitively, despite the volume of research that has been carried out on these issues. Published evidence suggests that declarative memory can be improved by stimulants, with some evidence consistent with enhanced consolidation of memories. Effects on the executive functions of working memory and cognitive control are less reliable but have been found for at least some individuals on some tasks. In closing, we enumerate the many outstanding questions that remain to be addressed by future research and also identify obstacles facing this research.
There are also premade ‘stacks’ (or formulas) of cognitive enhancing superfoods, herbals or proteins, which pre-package several beneficial extracts for a greater impact. These types of cognitive enhancers are more ‘subtle’ than the pharmaceutical alternative with regards to effects, but they work all the same. In fact, for many people, they work better than smart drugs as they are gentler on the brain and produce fewer side-effects.

The one indisputable finding from the literature so far is that many people are seeking cognitive enhancement. Beyond that, the literature yields only partial and tentative answers to the questions just raised. Given the potential impact of cognitive enhancement on society, more research is needed. For research on the epidemiology of cognitive enhancement, studies focused on the cognitive-enhancement practices and experiences of students and nonstudent workers are needed. For research on the cognitive effects of prescription stimulants, larger samples are needed. Only with substantially larger samples will it be possible to assess small but potentially important benefits, as well as risks, and to distinguish individual differences in drug response. Large samples would also be required to compare these effects to the cognitive effects of improved sleep, exercise, nutrition, and stress management. To include more ecologically valid measures of cognition in academic and work environments would in addition require the equivalent of a large clinical trial.

The data from 2-back and 3-back tasks are more complex. Three studies examined performance in these more challenging tasks and found no effect of d-AMP on average performance (Mattay et al., 2000, 2003; Mintzer & Griffiths, 2007). However, in at least two of the studies, the overall null result reflected a mixture of reliably enhancing and impairing effects. Mattay et al. (2000) examined the performance of subjects with better and worse working memory capacity separately and found that subjects whose performance on placebo was low performed better on d-AMP, whereas subjects whose performance on placebo was high were unaffected by d-AMP on the 2-back and impaired on the 3-back tasks. Mattay et al. (2003) replicated this general pattern of data with subjects divided according to genotype. The specific gene of interest codes for the production of Catechol-O-methyltransferase (COMT), an enzyme that breaks down dopamine and norepinephrine. A common polymorphism determines the activity of the enzyme, with a substitution of methionine for valine at Codon 158 resulting in a less active form of COMT. The met allele is thus associated with less breakdown of dopamine and hence higher levels of synaptic dopamine than the val allele. Mattay et al. (2003) found that subjects who were homozygous for the val allele were able to perform the n-back faster with d-AMP; those homozygous for met were not helped by the drug and became significantly less accurate in the 3-back condition with d-AMP. In the case of the third study finding no overall effect, analyses of individual differences were not reported (Mintzer & Griffiths, 2007).
Two additional studies assessed the effects of d-AMP on visual–motor sequence learning, a form of nondeclarative, procedural learning, and found no effect (Kumari et al., 1997; Makris, Rush, Frederich, Taylor, & Kelly, 2007). In a related experimental paradigm, Ward, Kelly, Foltin, and Fischman (1997) assessed the effect of d-AMP on the learning of motor sequences from immediate feedback and also failed to find an effect.

Does little alone, but absolutely necessary in conjunction with piracetam. (Bought from Smart Powders.) When turning my 3kg of piracetam into pills, I decided to avoid the fishy-smelling choline and go with 500g of DMAE (; it seemed to work well when I used it before with oxiracetam & piracetam, since I had no piracetam headaches, and be considerably less bulky.
Frustrated by the lack of results, pharmaceutical companies have been shutting down their psychiatric drug research programmes. Traditional methods, such as synthesising new molecules and seeing what effect they have on symptoms, seem to have run their course. A shift of strategy is looming, towards research that focuses on genes and brain circuitry rather than chemicals. The shift will prolong the wait for new blockbuster drugs further, as the new systems are developed, and offers no guarantees of results.
So the chi-squared believes there is a statistically-significant difference, the two-sample test disagrees, and the binomial also disagrees. Since I regarded it as a dubious theory, can’t see a difference, and the binomial seems like the most appropriate test, I conclude that several months of 1mg iodine did not change my eye color. (As a final test, when I posted the results on the Longecity forum where people were claiming the eye color change, I swapped the labels on the photos to see if anyone would claim something along the lines when I look at the photos, I can see a difference!. I thought someone might do that, which would be a damning demonstration of their biases & wishful thinking, but no one did.)
The truth is that, almost 20 years ago when my brain was failing and I was fat and tired, I did not know to follow this advice. I bought $1000 worth of smart drugs from Europe, took them all at once out of desperation, and got enough cognitive function to save my career and tackle my metabolic problems. With the information we have now, you don’t need to do that. Please learn from my mistakes!