“Cavin’s enthusiasm and drive to help those who need it is unparalleled! He delivers the information in an easy to read manner, no PhD required from the reader. 🙂 Having lived through such trauma himself he has real empathy for other survivors and it shows in the writing. This is a great read for anyone who wants to increase the health of their brain, injury or otherwise! Read it!!!”
That first night, I had severe trouble sleeping, falling asleep in 30 minutes rather than my usual 19.6±11.9, waking up 12 times (5.9±3.4), and spending ~90 minutes awake (18.1±16.2), and naturally I felt unrested the next day; I initially assumed it was because I had left a fan on (moving air keeps me awake) but the new potassium is also a possible culprit. When I asked, Kevin said:
Overall, the studies listed in Table 1 vary in ways that make it difficult to draw precise quantitative conclusions from them, including their definitions of nonmedical use, methods of sampling, and demographic characteristics of the samples. For example, some studies defined nonmedical use in a way that excluded anyone for whom a drug was prescribed, regardless of how and why they used it (Carroll et al., 2006; DeSantis et al., 2008, 2009; Kaloyanides et al., 2007; Low & Gendaszek, 2002; McCabe & Boyd, 2005; McCabe et al., 2004; Rabiner et al., 2009; Shillington et al., 2006; Teter et al., 2003, 2006; Weyandt et al., 2009), whereas others focused on the intent of the user and counted any use for nonmedical purposes as nonmedical use, even if the user had a prescription (Arria et al., 2008; Babcock & Byrne, 2000; Boyd et al., 2006; Hall et al., 2005; Herman-Stahl et al., 2007; Poulin, 2001, 2007; White et al., 2006), and one did not specify its definition (Barrett, Darredeau, Bordy, & Pihl, 2005). Some studies sampled multiple institutions (DuPont et al., 2008; McCabe & Boyd, 2005; Poulin, 2001, 2007), some sampled only one (Babcock & Byrne, 2000; Barrett et al., 2005; Boyd et al., 2006; Carroll et al., 2006; Hall et al., 2005; Kaloyanides et al., 2007; McCabe & Boyd, 2005; McCabe et al., 2004; Shillington et al., 2006; Teter et al., 2003, 2006; White et al., 2006), and some drew their subjects primarily from classes in a single department at a single institution (DeSantis et al., 2008, 2009; Low & Gendaszek, 2002). With few exceptions, the samples were all drawn from restricted geographical areas. Some had relatively high rates of response (e.g., 93.8%; Low & Gendaszek 2002) and some had low rates (e.g., 10%; Judson & Langdon, 2009), the latter raising questions about sample representativeness for even the specific population of students from a given region or institution.
(People aged <=18 shouldn’t be using any of this except harmless stuff - where one may have nutritional deficits - like fish oil & vitamin D; melatonin may be especially useful, thanks to the effects of screwed-up school schedules & electronics use on teenagers’ sleep. Changes in effects with age are real - amphetamines’ stimulant effects and modafinil’s histamine-like side-effects come to mind as examples.)
The research literature, while copious, is messy and varied: methodologies and devices vary substantially, sample sizes are tiny, the study designs vary from paper to paper, metrics are sometimes comically limited (one study measured speed of finishing a RAPM IQ test but not scores), blinding is rare and unclear how successful, etc. Relevant papers include Chung et al 2012, Rojas & Gonzalez-Lima 2013, & Gonzalez-Lima & Barrett 2014. Another Longecity user ran a self-experiment, with some design advice from me, where he performed a few cognitive tests over several periods of LLLT usage (the blocks turned out to be ABBA), using his father and towels to try to blind himself as to condition. I analyzed his data, and his scores did seem to improve, but his scores improved so much in the last part of the self-experiment I found myself dubious as to what was going on - possibly a failure of randomness given too few blocks and an temporal exogenous factor in the last quarter which was responsible for the improvement.

And as before, around 9 AM I began to feel the peculiar feeling that I was mentally able and apathetic (in a sort of aboulia way); so I decided to try what helped last time, a short nap. But this time, though I took a full hour, I slept not a wink and my Zeo recorded only 2 transient episodes of light sleep! A back-handed sort of proof of alertness, I suppose. I didn’t bother trying again. The rest of the day was mediocre, and I wound up spending much of it on chores and whatnot out of my control. Mentally, I felt better past 3 PM.
The greatly increased variance, but only somewhat increased mean, is consistent with nicotine operating on me with an inverted U-curve for dosage/performance (or the Yerkes-Dodson law): on good days, 1mg nicotine is too much and degrades performance (perhaps I am overstimulated and find it hard to focus on something as boring as n-back) while on bad days, nicotine is just right and improves n-back performance.
The fish oil can be considered a free sunk cost: I would take it in the absence of an experiment. The empty pill capsules could be used for something else, so we’ll put the 500 at $5. Filling 500 capsules with fish and olive oil will be messy and take an hour. Taking them regularly can be added to my habitual morning routine for vitamin D and the lithium experiment, so that is close to free but we’ll call it an hour over the 250 days. Recording mood/productivity is also free a sunk cost as it’s necessary for the other experiments; but recording dual n-back scores is more expensive: each round is ~2 minutes and one wants >=5, so each block will cost >10 minutes, so 18 tests will be >180 minutes or >3 hours. So >5 hours. Total: 5 + (>5 \times 7.25) = >41.
The one indisputable finding from the literature so far is that many people are seeking cognitive enhancement. Beyond that, the literature yields only partial and tentative answers to the questions just raised. Given the potential impact of cognitive enhancement on society, more research is needed. For research on the epidemiology of cognitive enhancement, studies focused on the cognitive-enhancement practices and experiences of students and nonstudent workers are needed. For research on the cognitive effects of prescription stimulants, larger samples are needed. Only with substantially larger samples will it be possible to assess small but potentially important benefits, as well as risks, and to distinguish individual differences in drug response. Large samples would also be required to compare these effects to the cognitive effects of improved sleep, exercise, nutrition, and stress management. To include more ecologically valid measures of cognition in academic and work environments would in addition require the equivalent of a large clinical trial.
Recent developments include biosensor-equipped smart pills that sense the appropriate environment and location to release pharmacological agents. Medimetrics (Eindhoven, Netherlands) has developed a pill called IntelliCap with drug reservoir, pH and temperature sensors that release drugs to a defined region of the gastrointestinal tract. This device is CE marked and is in early stages of clinical trials for FDA approval. Recently, Google announced its intent to invest and innovate in this space.
Serotonin, or 5-hydroxytryptamine (5-HTP), is another primary neurotransmitter and controls major features of the mental landscape including mood, sleep and appetite. Serotonin is produced within the body by exposure, which is one reason that the folk-remedy of “getting some sun” to fight depression is scientifically credible. Many foods contain natural serotonergic (serotonin-promoting or releasing) compounds, including the well-known chemical L-Tryptophan found in turkey, which can promote sleep after big Thanksgiving dinners.
AMP and MPH increase catecholamine activity in different ways. MPH primarily inhibits the reuptake of dopamine by pre-synaptic neurons, thus leaving more dopamine in the synapse and available for interacting with the receptors of the postsynaptic neuron. AMP also affects reuptake, as well as increasing the rate at which neurotransmitter is released from presynaptic neurons (Wilens, 2006). These effects are manifest in the attention systems of the brain, as already mentioned, and in a variety of other systems that depend on catecholaminergic transmission as well, giving rise to other physical and psychological effects. Physical effects include activation of the sympathetic nervous system (i.e., a fight-or-flight response), producing increased heart rate and blood pressure. Psychological effects are mediated by activation of the nucleus accumbens, ventral striatum, and other parts of the brain’s reward system, producing feelings of pleasure and the potential for dependence.
I have elsewhere remarked on the apparent lack of benefit to taking multivitamins and the possible harm; so one might well wonder about a specific vitamin like vitamin D. However, a multivitamin is not vitamin D, so it’s no surprise that they might do different things. If a multivitamin had no vitamin D in it, or if it had vitamin D in different doses, or if it had substances which interacted with vitamin D (such as calcium), or if it had substances which had negative effects which outweigh the positive (such as vitamin A?), we could well expect differing results. In this case, all of those are true to varying extents. Some multivitamins I’ve had contained no vitamin D. The last multivitamin I was taking both contains vitamins used in the negative trials and also some calcium; the listed vitamin D dosage was a trivial ~400IU, while I take >10x as much now (5000IU).
Low-dose lithium orotate is extremely cheap, ~$10 a year. There is some research literature on it improving mood and impulse control in regular people, but some of it is epidemiological (which implies considerable unreliability); my current belief is that there is probably some effect size, but at just 5mg, it may be too tiny to matter. I have ~40% belief that there will be a large effect size, but I’m doing a long experiment and I should be able to detect a large effect size with >75% chance. So, the formula is NPV of the difference between taking and not taking, times quality of information, times expectation: \frac{10 - 0}{\ln 1.05} \times 0.75 \times 0.40 = 61.4, which justifies a time investment of less than 9 hours. As it happens, it took less than an hour to make the pills & placebos, and taking them is a matter of seconds per week, so the analysis will be the time-consuming part. This one may actually turn a profit.
“Cavin’s enthusiasm and drive to help those who need it is unparalleled! He delivers the information in an easy to read manner, no PhD required from the reader. 🙂 Having lived through such trauma himself he has real empathy for other survivors and it shows in the writing. This is a great read for anyone who wants to increase the health of their brain, injury or otherwise! Read it!!!”
If you could take a pill that would help you study and get better grades, would you? Off-label use of “smart drugs” – pharmaceuticals meant to treat disorders like ADHD, narcolepsy, and Alzheimer’s – are becoming increasingly popular among college students hoping to get ahead, by helping them to stay focused and alert for longer periods of time. But is this cheating? Should their use as cognitive enhancers be approved by the FDA, the medical community, and society at large? Do the benefits outweigh the risks?
Another interpretation of the mixed results in the literature is that, in some cases at least, individual differences in response to stimulants have led to null results when some participants in the sample are in fact enhanced and others are not. This possibility is not inconsistent with the previously mentioned ones; both could be at work. Evidence has already been reviewed that ability level, personality, and COMT genotype modulate the effect of stimulants, although most studies in the literature have not broken their samples down along these dimensions. There may well be other as-yet-unexamined individual characteristics that determine drug response. The equivocal nature of the current literature may reflect a mixture of substantial cognitive-enhancement effects for some individuals, diluted by null effects or even counteracted by impairment in others.
The question of whether stimulants are smart pills in a pragmatic sense cannot be answered solely by consideration of the statistical significance of the difference between stimulant and placebo. A drug with tiny effects, even if statistically significant, would not be a useful cognitive enhancer for most purposes. We therefore report Cohen’s d effect size measure for published studies that provide either means and standard deviations or relevant F or t statistics (Thalheimer & Cook, 2002). More generally, with most sample sizes in the range of a dozen to a few dozen, small effects would not reliably be found.
I am not alone in thinking of the potential benefits of smart drugs in the military. In their popular novel Ghost Fleet: A Novel of the Next World War, P.W. Singer and August Cole tell the story of a future war using drug-like nootropic implants and pills, such as Modafinil. DARPA is also experimenting with neurological technology and enhancements such as the smart drugs discussed here. As demonstrated in the following brain initiatives: Targeted Neuroplasticity Training (TNT), Augmented Cognition, and High-quality Interface Systems such as their Next-Generational Nonsurgical Neurotechnology (N3).
We’ve talk about how caffeine affects the body in great detail, but the basic idea is that it can improve your motivation and focus by increasing catecholamine signaling. Its effects can be dampened over time, however, as you start to build a caffeine tolerance. Research on L-theanine, a common amino acid, suggests it promotes neuronal health and can decrease the incidence of cold and flu symptoms by strengthening the immune system. And one study, published in the journal Biological Psychology, found that L-theanine reduces psychological and physiological stress responses—which is why it’s often taken with caffeine. In fact, in a 2014 systematic review of 11 different studies, published in the journal Nutrition Review, researchers found that use of caffeine in combination with L-theanine promoted alertness, task switching, and attention. The reviewers note the effects are most pronounced during the first two hours post-dose, and they also point out that caffeine is the major player here, since larger caffeine doses were found to have more of an effect than larger doses of L-theanine.
Overall, the studies listed in Table 1 vary in ways that make it difficult to draw precise quantitative conclusions from them, including their definitions of nonmedical use, methods of sampling, and demographic characteristics of the samples. For example, some studies defined nonmedical use in a way that excluded anyone for whom a drug was prescribed, regardless of how and why they used it (Carroll et al., 2006; DeSantis et al., 2008, 2009; Kaloyanides et al., 2007; Low & Gendaszek, 2002; McCabe & Boyd, 2005; McCabe et al., 2004; Rabiner et al., 2009; Shillington et al., 2006; Teter et al., 2003, 2006; Weyandt et al., 2009), whereas others focused on the intent of the user and counted any use for nonmedical purposes as nonmedical use, even if the user had a prescription (Arria et al., 2008; Babcock & Byrne, 2000; Boyd et al., 2006; Hall et al., 2005; Herman-Stahl et al., 2007; Poulin, 2001, 2007; White et al., 2006), and one did not specify its definition (Barrett, Darredeau, Bordy, & Pihl, 2005). Some studies sampled multiple institutions (DuPont et al., 2008; McCabe & Boyd, 2005; Poulin, 2001, 2007), some sampled only one (Babcock & Byrne, 2000; Barrett et al., 2005; Boyd et al., 2006; Carroll et al., 2006; Hall et al., 2005; Kaloyanides et al., 2007; McCabe & Boyd, 2005; McCabe et al., 2004; Shillington et al., 2006; Teter et al., 2003, 2006; White et al., 2006), and some drew their subjects primarily from classes in a single department at a single institution (DeSantis et al., 2008, 2009; Low & Gendaszek, 2002). With few exceptions, the samples were all drawn from restricted geographical areas. Some had relatively high rates of response (e.g., 93.8%; Low & Gendaszek 2002) and some had low rates (e.g., 10%; Judson & Langdon, 2009), the latter raising questions about sample representativeness for even the specific population of students from a given region or institution.
The term “smart pills” refers to miniature electronic devices that are shaped and designed in the mold of pharmaceutical capsules but perform highly advanced functions such as sensing, imaging and drug delivery. They may include biosensors or image, pH or chemical sensors. Once they are swallowed, they travel along the gastrointestinal tract to capture information that is otherwise difficult to obtain, and then are easily eliminated from the system. Their classification as ingestible sensors makes them distinct from implantable or wearable sensors.
I noticed what may have been an effect on my dual n-back scores; the difference is not large (▃▆▃▃▂▂▂▂▄▅▂▄▂▃▅▃▄ vs ▃▄▂▂▃▅▂▂▄▁▄▃▅▂▃▂▄▂▁▇▃▂▂▄▄▃▃▂▃▂▂▂▃▄▄▃▆▄▄▂▃▄▃▁▂▂▂▃▂▄▂▁▁▂▄▁▃▂▄) and appears mostly in the averages - Toomim’s quick two-sample t-test gave p=0.23, although a another analysis gives p=0.138112. One issue with this before-after quasi-experiment is that one would expect my scores to slowly rise over time and hence a fish oil after would yield a score increase - the 3.2 point difference could be attributable to that, placebo effect, or random variation etc. But an accidentally noticed effect (d=0.28) is a promising start. An experiment may be worth doing given that fish oil does cost a fair bit each year: randomized blocks permitting an fish-oil-then-placebo comparison would take care of the first issue, and then blinding (olive oil capsules versus fish oil capsules?) would take care of the placebo worry.

Terms and Conditions: The content and products found at feedabrain.com, adventuresinbraininjury.com, the Adventures in Brain Injury Podcast, or provided by Cavin Balaster or others on the Feed a Brain team is intended for informational purposes only and is not provided by medical professionals. The information on this website has not been evaluated by the food & drug administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. Readers/listeners/viewers should not act upon any information provided on this website or affiliated websites without seeking advice from a licensed physician, especially if pregnant, nursing, taking medication, or suffering from a medical condition. This website is not intended to create a physician-patient relationship.
The truth is that, almost 20 years ago when my brain was failing and I was fat and tired, I did not know to follow this advice. I bought $1000 worth of smart drugs from Europe, took them all at once out of desperation, and got enough cognitive function to save my career and tackle my metabolic problems. With the information we have now, you don’t need to do that. Please learn from my mistakes!
Known widely as ‘Brahmi,’ the Bacopa Monnieri or Water Hyssop, is a small herb native to India that finds mention in various Ayurvedic texts for being the best natural cognitive enhancer. It has been used traditionally for memory enhancement, asthma, epilepsy and improving mood and attention of people over 65. It is known to be one of the best brain supplement in the world.
But while some studies have found short-term benefits, Doraiswamy says there is no evidence that what are commonly known as smart drugs — of any type — improve thinking or productivity over the long run. “There’s a sizable demand, but the hype around efficacy far exceeds available evidence,” notes Doraiswamy, adding that, for healthy young people such as Silicon Valley go-getters, “it’s a zero-sum game. That’s because when you up one circuit in the brain, you’re probably impairing another system.”
Factor analysis. The strategy: read in the data, drop unnecessary data, impute missing variables (data is too heterogeneous and collected starting at varying intervals to be clean), estimate how many factors would fit best, factor analyze, pick the ones which look like they match best my ideas of what productive is, extract per-day estimates, and finally regress LLLT usage on the selected factors to look for increases.
I stayed up late writing some poems and about how [email protected] kills, and decided to make a night of it. I took the armodafinil at 1 AM; the interesting bit is that this was the morning/evening after what turned out to be an Adderall (as opposed to placebo) trial, so perhaps I will see how well or ill they go together. A set of normal scores from a previous day was 32%/43%/51%/48%. At 11 PM, I scored 39% on DNB; at 1 AM, I scored 50%/43%; 5:15 AM, 39%/37%; 4:10 PM, 42%/40%; 11 PM, 55%/21%/38%. (▂▄▆▅ vs ▃▅▄▃▃▄▃▇▁▃)
One possibility is that when an individual takes a drug like noopept, they experience greater alertness and mental clarity. So, while the objective ability to see may not actually improve, the ability to process visual stimuli increases, resulting in the perception of improved vision. This allows individuals to process visual cues more quickly, take in scenes more easily, and allows for the increased perception of smaller details.

Spaced repetition at midnight: 3.68. (Graphing preceding and following days: ▅▄▆▆▁▅▆▃▆▄█ ▄ ▂▄▄▅) DNB starting 12:55 AM: 30/34/41. Transcribed Sawaragi 2005, then took a walk. DNB starting 6:45 AM: 45/44/33. Decided to take a nap and then take half the armodafinil on awakening, before breakfast. I wound up oversleeping until noon (4:28); since it was so late, I took only half the armodafinil sublingually. I spent the afternoon learning how to do value of information calculations, and then carefully working through 8 or 9 examples for my various pages, which I published on Lesswrong. That was a useful little project. DNB starting 12:09 AM: 30/38/48. (To graph the preceding day and this night: ▇▂█▆▅▃▃▇▇▇▁▂▄ ▅▅▁▁▃▆) Nights: 9:13; 7:24; 9:13; 8:20; 8:31.


Discussions of PEA mention that it’s almost useless without a MAOI to pave the way; hence, when I decided to get deprenyl and noticed that deprenyl is a MAOI, I decided to also give PEA a second chance in conjunction with deprenyl. Unfortunately, in part due to my own shenanigans, Nubrain canceled the deprenyl order and so I have 20g of PEA sitting around. Well, it’ll keep until such time as I do get a MAOI.


For illustration, consider amphetamines, Ritalin, and modafinil, all of which have been proposed as cognitive enhancers of attention. These drugs exhibit some positive effects on cognition, especially among individuals with lower baseline abilities. However, individuals of normal or above-average cognitive ability often show negligible improvements or even decrements in performance following drug treatment (for details, see de Jongh, Bolt, Schermer, & Olivier, 2008). For instance, Randall, Shneerson, and File (2005) found that modafinil improved performance only among individuals with lower IQ, not among those with higher IQ. [See also Finke et al 2010 on visual attention.] Farah, Haimm, Sankoorikal, & Chatterjee 2009 found a similar nonlinear relationship of dose to response for amphetamines in a remote-associates task, with low-performing individuals showing enhanced performance but high-performing individuals showing reduced performance. Such ∩-shaped dose-response curves are quite common (see Cools & Robbins, 2004)
First half at 6 AM; second half at noon. Wrote a short essay I’d been putting off and napped for 1:40 from 9 AM to 10:40. This approach seems to work a little better as far as the aboulia goes. (I also bother to smell my urine this time around - there’s a definite off smell to it.) Nights: 10:02; 8:50; 10:40; 7:38 (2 bad nights of nasal infections); 8:28; 8:20; 8:43 (▆▃█▁▂▂▃).
Table 5 lists the results of 16 tasks from 13 articles on the effects of d-AMP or MPH on cognitive control. One of the simplest tasks used to study cognitive control is the go/no-go task. Subjects are instructed to press a button as quickly as possible for one stimulus or class of stimuli (go) and to refrain from pressing for another stimulus or class of stimuli (no go). De Wit et al. (2002) used a version of this task to measure the effects of d-AMP on subjects’ ability to inhibit a response and found enhancement in the form of decreased false alarms (responses to no-go stimuli) and increased speed of correct go responses. They also found that subjects who made the most errors on placebo experienced the greatest enhancement from the drug.
Null results are generally less likely to be published. Consistent with the operation of such a bias in the present literature, the null results found in our survey were invariably included in articles reporting the results of multiple tasks or multiple measures of a single task; published single-task studies with exclusively behavioral measures all found enhancement. This suggests that some single-task studies with null results have gone unreported. The present mixed results are consistent with those of other recent reviews that included data from normal subjects, using more limited sets of tasks or medications (Advokat, 2010; Chamberlain et al., 2010; Repantis, Schlattmann, Laisney, & Heuser, 2010).
The evidence? In small studies, healthy people taking modafinil showed improved planning and working memory, and better reaction time, spatial planning, and visual pattern recognition. A 2015 meta-analysis claimed that “when more complex assessments are used, modafinil appears to consistently engender enhancement of attention, executive functions, and learning” without affecting a user’s mood. In a study from earlier this year involving 39 male chess players, subjects taking modafinil were found to perform better in chess games played against a computer.
At this point I began to get bored with it and the lack of apparent effects, so I began a pilot trial: I’d use the LED set for 10 minutes every few days before 2PM, record, and in a few months look for a correlation with my daily self-ratings of mood/productivity (for 2.5 years I’ve asked myself at the end of each day whether I did more, the usual, or less work done that day than average, so 2=below-average, 3=average, 4=above-average; it’s ad hoc, but in some factor analyses I’ve been playing with, it seems to load on a lot of other variables I’ve measured, so I think it’s meaningful).
2ml is supposed to translate to 24mg, which is a big dose. I do not believe any of the commercial patches go much past that. I asked Wedrifid, whose notes inspired my initial interest, and he was taking perhaps 2-4mg, and expressed astonishment that I might be taking 24mg. (2mg is in line with what I am told by another person - that 2mg was so much that they actually felt a little sick. On the other hand, in one study, the subjects could not reliably distinguish between 1mg and placebo24.) 24mg is particularly troubling in that I weigh ~68kg, and nicotine poisoning and the nicotine LD50 start, for me, at around 68mg of nicotine. (I reflected that the entire jar could be a useful murder weapon, although nicotine presumably would be caught in an autopsy’s toxicology screen; I later learned nicotine was an infamous weapon in the 1800s before any test was developed. It doesn’t seem used anymore, but there are still fatal accidents due to dissolved nicotine.) The upper end of the range, 10mg/kg or 680mg for me, is calculated based on experienced smokers. Something is wrong here - I can’t see why I would have nicotine tolerance comparable to a hardened smoker, inasmuch as my maximum prior exposure was second-hand smoke once in a blue moon. More likely is that either the syringe is misleading me or the seller NicVape sold me something more dilute than 12mg/ml. (I am sure that it’s not simply plain water; when I mix the drops with regular water, I can feel the propylene glycol burning as it goes down.) I would rather not accuse an established and apparently well-liked supplier of fraud, nor would I like to simply shrug and say I have a mysterious tolerance and must experiment with doses closer to the LD50, so the most likely problem is a problem with the syringe. The next day I altered the procedure to sucking up 8ml, squirting out enough fluid to move the meniscus down to 7ml, and then ejecting the rest back into the container. The result was another mild clean stimulation comparable to the previous 1ml days. The next step is to try a completely different measuring device, which doesn’t change either.

Those who have taken them swear they do work – though not in the way you might think. Back in 2015, a review of the evidence found that their impact on intelligence is “modest”. But most people don’t take them to improve their mental abilities. Instead, they take them to improve their mental energy and motivation to work. (Both drugs also come with serious risks and side effects – more on those later).
Ongoing studies are looking into the possible pathways by which nootropic substances function. Researchers have postulated that the mental health advantages derived from these substances can be attributed to their effects on the cholinergic and dopaminergic systems of the brain. These systems regulate two important neurotransmitters, acetylcholine and dopamine.
Armodafinil is sort of a purified modafinil which Cephalon sells under the brand-name Nuvigil (and Sun under Waklert20). Armodafinil acts much the same way (see the ADS Drug Profile) but the modafinil variant filtered out are the faster-acting molecules21. Hence, it is supposed to last longer. as studies like Pharmacodynamic effects on alertness of single doses of armodafinil in healthy subjects during a nocturnal period of acute sleep loss seem to bear out; anecdotally, it’s also more powerful, with Cephalon offering pills with doses as low as 50mg. (To be technical, modafinil is racemic: it comes in two forms which are rotations, mirror-images of each other. The rotation usually doesn’t matter, but sometimes it matters tremendously - for example, one form of thalidomide stops morning sickness, and the other rotation causes hideous birth defects.)

Can brain enhancing pills actually improve memory? This is a common question and the answer varies, depending on the product you are considering. The top 25 brain enhancement supplements appear to produce results for many users. Research and scientific studies have demonstrated the brain boosting effects of nootropic ingredients in the best quality supplements. At Smart Pill Guide, you can read nootropics reviews and discover how to improve memory for better performance in school or at work.
Smart pills have revolutionized the diagnosis of gastrointestinal disorders and could replace conventional diagnostic techniques such as endoscopy. Traditionally, an endoscopy probe is inserted into a patient’s esophagus, and subsequently the upper and lower gastrointestinal tract, for diagnostic purposes. There is a risk of perforation or tearing of the esophageal lining, and the patient faces discomfort during and after the procedure. A smart pill or wireless capsule endoscopy (WCE), however, can easily be swallowed and maneuvered to capture images, and requires minimal patient preparation, such as sedation. The built-in sensors allow the measurement of all fluids and gases in the gut, giving the physician a multidimensional picture of the human body.
(In particular, I don’t think it’s because there’s a sudden new surge of drugs. FDA drug approval has been decreasing over the past few decades, so this is unlikely a priori. More specifically, many of the major or hot drugs go back a long time. Bacopa goes back millennia, melatonin I don’t even know, piracetam was the ’60s, modafinil was ’70s or ’80s, ALCAR was ’80s AFAIK, Noopept & coluracetam were ’90s, and so on.)
If you could take a pill that would help you study and get better grades, would you? Off-label use of “smart drugs” – pharmaceuticals meant to treat disorders like ADHD, narcolepsy, and Alzheimer’s – are becoming increasingly popular among college students hoping to get ahead, by helping them to stay focused and alert for longer periods of time. But is this cheating? Should their use as cognitive enhancers be approved by the FDA, the medical community, and society at large? Do the benefits outweigh the risks?
And there are other uses that may make us uncomfortable. The military is interested in modafinil as a drug to maintain combat alertness. A drug such as propranolol could be used to protect soldiers from the horrors of war. That could be considered a good thing – post-traumatic stress disorder is common in soldiers. But the notion of troops being unaffected by their experiences makes many feel uneasy.
There is an ancient precedent to humans using natural compounds to elevate cognitive performance. Incan warriors in the 15th century would ingest coca leaves (the basis for cocaine) before battle. Ethiopian hunters in the 10th century developed coffee bean paste to improve hunting stamina. Modern athletes ubiquitously consume protein powders and hormones to enhance their training, recovery, and performance. The most widely consumed psychoactive compound today is caffeine. Millions of people use coffee and tea to be more alert and focused.
Articles and information on this website may only be copied, reprinted, or redistributed with written permission (but please ask, we like to give written permission!) The purpose of this Blog is to encourage the free exchange of ideas. The entire contents of this website is based upon the opinions of Dave Asprey, unless otherwise noted. Individual articles are based upon the opinions of the respective authors, who may retain copyright as marked. The information on this website is not intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice. It is intended as a sharing of knowledge and information from the personal research and experience of Dave Asprey and the community. We will attempt to keep all objectionable messages off this site; however, it is impossible to review all messages immediately. All messages expressed on The Bulletproof Forum or the Blog, including comments posted to Blog entries, represent the views of the author exclusively and we are not responsible for the content of any message.
×