Spaced repetition at midnight: 3.68. (Graphing preceding and following days: ▅▄▆▆▁▅▆▃▆▄█ ▄ ▂▄▄▅) DNB starting 12:55 AM: 30/34/41. Transcribed Sawaragi 2005, then took a walk. DNB starting 6:45 AM: 45/44/33. Decided to take a nap and then take half the armodafinil on awakening, before breakfast. I wound up oversleeping until noon (4:28); since it was so late, I took only half the armodafinil sublingually. I spent the afternoon learning how to do value of information calculations, and then carefully working through 8 or 9 examples for my various pages, which I published on Lesswrong. That was a useful little project. DNB starting 12:09 AM: 30/38/48. (To graph the preceding day and this night: ▇▂█▆▅▃▃▇▇▇▁▂▄ ▅▅▁▁▃▆) Nights: 9:13; 7:24; 9:13; 8:20; 8:31.
And in his followup work, An opportunity cost model of subjective effort and task performance (discussion). Kurzban seems to have successfully refuted the blood-glucose theory, with few dissenters from commenting researchers. The more recent opinion seems to be that the sugar interventions serve more as a reward-signal indicating more effort is a good idea, not refueling the engine of the brain (which would seem to fit well with research on procrastination).↩
Noopept was developed in Russia in the 90s, and is alleged to improve learning. This drug modifies acetylcholine and AMPA receptors, increasing the levels of these neurotransmitters in the brain. This is believed to account for reports of its efficacy as a 'study drug'. Noopept in the UK is illegal, as the 2016 Psychoactive Substances Act made it an offence to sell this drug in the UK - selling it could even lead to 7 years in prison. To enhance its nootropic effects, some users have been known to snort Noopept.
11:30 AM. By 2:30 PM, my hunger is quite strong and I don’t feel especially focused - it’s difficult to get through the tab-explosion of the morning, although one particularly stupid poster on the DNB ML makes me feel irritated like I might on Adderall. I initially figure the probability at perhaps 60% for Adderall, but when I wake up at 2 AM and am completely unable to get back to sleep, eventually racking up a Zeo score of 73 (compared to the usual 100s), there’s no doubt in my mind (95%) that the pill was Adderall. And it was the last Adderall pill indeed.
Similarly, Mehta et al 2000 noted that the positive effects of methylphenidate (40 mg) on spatial working memory performance were greatest in those volunteers with lower baseline working memory capacity. In a study of the effects of ginkgo biloba in healthy young adults, Stough et al 2001 found improved performance in the Trail-Making Test A only in the half with the lower verbal IQ.
Sarter is downbeat, however, about the likelihood of the pharmaceutical industry actually turning candidate smart drugs into products. Its interest in cognitive enhancers is shrinking, he says, “because these drugs are not working for the big indications, which is the market that drives these developments. Even adult ADHD has not been considered a sufficiently attractive large market.”
In August 2011, after winning the spaced repetition contest and finishing up the Adderall double-blind testing, I decided the time was right to try nicotine again. I had since learned that e-cigarettes use nicotine dissolved in water, and that nicotine-water was a vastly cheaper source of nicotine than either gum or patches. So I ordered 250ml of water at 12mg/ml (total cost: $18.20). A cigarette apparently delivers around 1mg of nicotine, so half a ml would be a solid dose of nicotine, making that ~500 doses. Plenty to experiment with. The question is, besides the stimulant effect, nicotine also causes habit formation; what habits should I reinforce with nicotine? Exercise, and spaced repetition seem like 2 good targets.
Some of the newest substances being used as ‘smart drugs’ are medically prescribed for other conditions. For example, methylphenidate, commonly known as Ritalin, is used to treat attention deficit hyperactivity disorder (ADHD). So is Adderall, a combination drug containing two forms of amphetamine. These are among a suite of pharmaceuticals now being used by healthy people, particularly university students, to enhance their capabilities for learning or working. 
Even the best of today’s nootropics only just barely scratch the surface. You might say that we are in the “Nokia 1100” phase of taking nootropics, and as better tools and more data come along, the leading thinkers in the space see a powerful future. For example, they are already beginning to look past biochemistry to the epigenome. Not only is the epigenome the code that runs much of your native biochemistry, we now know that experiences in life can be recorded in your epigenome and then passed onto future generations. There is every reason to believe that you are currently running epigenetic code that you inherited from your great-grandmother’s life experiences. And there is every reason to believe that the epigenome can be hacked – that the nootropics of the future can not only support and enhance our biochemistry, but can permanently change the epigenetic code that drives that biochemistry and that we pass onto our children. This is why many healthy individuals use nootropics. They have great benefits and can promote brain function and reduce oxidative stress. They can also improve sleep quality.
AMP was first investigated as an asthma medication in the 1920s, but its psychological effects were soon noticed. These included increased feelings of energy, positive mood, and prolonged physical endurance and mental concentration. These effects have been exploited in a variety of medical and nonmedical applications in the years since they were discovered, including to treat depression, to enhance alertness in military personnel, and to provide a competitive edge in athletic competition (Rasmussen, 2008). Today, AMP remains a widely used and effective treatment for ADHD (Wilens, 2006).
Not that everyone likes to talk about using the drugs. People don’t necessarily want to reveal how they get their edge and there is stigma around people trying to become smarter than their biology dictates, says Lawler. Another factor is undoubtedly the risks associated with ingesting substances bought on the internet and the confusing legal statuses of some. Phenylpiracetam, for example, is a prescription drug in Russia. It isn’t illegal to buy in the US, but the man-made chemical exists in a no man’s land where it is neither approved nor outlawed for human consumption, notes Lawler.

Results: Women with high caffeine intakes had significantly higher rates of bone loss at the spine than did those with low intakes (−1.90 ± 0.97% compared with 1.19 ± 1.08%; P = 0.038). When the data were analyzed according to VDR genotype and caffeine intake, women with the tt genotype had significantly (P = 0.054) higher rates of bone loss at the spine (−8.14 ± 2.62%) than did women with the TT genotype (−0.34 ± 1.42%) when their caffeine intake was >300 mg/d…In 1994, Morrison et al (22) first reported an association between vitamin D receptor gene (VDR) polymorphism and BMD of the spine and hip in adults. After this initial report, the relation between VDR polymorphism and BMD, bone turnover, and bone loss has been extensively evaluated. The results of some studies support an association between VDR polymorphism and BMD (23-,25), whereas other studies showed no evidence for this association (26,27)…At baseline, no significant differences existed in serum parathyroid hormone, serum 25-hydroxyvitamin D, serum osteocalcin, and urinary N-telopeptide between the low- and high-caffeine groups (Table 1⇑). In the longitudinal study, the percentage of change in serum parathyroid hormone concentrations was significantly lower in the high-caffeine group than in the low-caffeine group (Table 2⇑). However, no significant differences existed in the percentage of change in serum 25-hydroxyvitamin D

(In particular, I don’t think it’s because there’s a sudden new surge of drugs. FDA drug approval has been decreasing over the past few decades, so this is unlikely a priori. More specifically, many of the major or hot drugs go back a long time. Bacopa goes back millennia, melatonin I don’t even know, piracetam was the ’60s, modafinil was ’70s or ’80s, ALCAR was ’80s AFAIK, Noopept & coluracetam were ’90s, and so on.)

But how to blind myself? I used my pill maker to make 9 OO pills of piracetam mix, and then 9 OO pills of piracetam mix+the Adderall, then I put them in a baggy. The idea is that I can blind myself as to what pill I am taking that day since at the end of the day, I can just look in the baggy and see whether a placebo or Adderall pill is missing: the big capsules are transparent so I can see whether there is a crushed-up blue Adderall in the end or not. If there are fewer Adderall than placebo, I took an Adderall, and vice-versa. Now, since I am checking at the end of each day, I also need to remove or add the opposite pill to maintain the ratio and make it easy to check the next day; more importantly I need to replace or remove a pill, because otherwise the odds will be skewed and I will know how they are skewed. (Imagine I started with 4 Adderalls and 4 placebos, and then 3 days in a row I draw placebos but I don’t add or remove any pills; the next day, because most of the placebos have been used up, there’s only a small chance I will get a placebo…)

The Trail Making Test is a paper-and-pencil neuropsychological test with two parts, one of which requires shifting between stimulus categories. Part A simply requires the subject to connect circled numbers in ascending order. Part B requires the subject to connect circled numbers and letters in an interleaved ascending order (1, A, 2, B, 3, C….), a task that places heavier demands on cognitive control. Silber et al. (2006) analyzed the effect of d-AMP on Trails A and B and failed to find an effect.
Looking at the prices, the overwhelming expense is for modafinil. It’s a powerful stimulant - possibly the single most effective ingredient in the list - but dang expensive. Worse, there’s anecdotal evidence that one can develop tolerance to modafinil, so we might be wasting a great deal of money on it. (And for me, modafinil isn’t even very useful in the daytime: I can’t even notice it.) If we drop it, the cost drops by a full $800 from $1761 to $961 (almost halving) and to $0.96 per day. A remarkable difference, and if one were genetically insensitive to modafinil, one would definitely want to remove it.
The soft gels are very small; one needs to be a bit careful - Vitamin D is fat-soluble and overdose starts in the range of 70,000 IU35, so it would take at least 14 pills, and it’s unclear where problems start with chronic use. Vitamin D, like many supplements, follows a U-shaped response curve (see also Melamed et al 2008 and Durup et al 2012) - too much can be quite as bad as too little. Too little, though, is likely very bad. The previously cited studies with high acute doses worked out to <1,000 IU a day, so they may reassure us about the risks of a large acute dose but not tell us much about smaller chronic doses; the mortality increases due to too-high blood levels begin at ~140nmol/l and reading anecdotes online suggest that 5k IU daily doses tend to put people well below that (around 70-100nmol/l). I probably should get a blood test to be sure, but I have something of a needle phobia.
Even party drugs are going to work: Biohackers are taking recreational drugs like LSD, psilocybin mushrooms, and mescaline in microdoses—about a tenth of what constitutes a typical dose—with the goal of becoming more focused and creative. Many who’ve tried it report positive results, but real research on the practice—and its safety—is a long way off. “Whether microdosing with LSD improves creativity and cognition remains to be determined in an objective experiment using double-blind, placebo-controlled methodology,” Sahakian says.
Going back to the 1960s, although it was a Romanian chemist who is credited with discovering nootropics, a substantial amount of research on racetams was conducted in the Soviet Union. This resulted in the birth of another category of substances entirely: adaptogens, which, in addition to benefiting cognitive function were thought to allow the body to better adapt to stress.
The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication, or have a medical condition.

A LessWronger found that it worked well for him as far as motivation and getting things done went, as did another LessWronger who sells it online (terming it a reasonable productivity enhancer) as did one of his customers, a pickup artist oddly enough. The former was curious whether it would work for me too and sent me Speciosa Pro’s Starter Pack: Test Drive (a sampler of 14 packets of powder and a cute little wooden spoon). In SE Asia, kratom’s apparently chewed, but the powders are brewed as a tea.
Also known as Arcalion or Bisbuthiamine and Enerion, Sulbutiamine is a compound of the Sulphur group and is an analog to vitamin B1, which is known to pass the blood-brain barrier easily. Sulbutiamine is found to circulate faster than Thiamine from blood to brain. It is recommended for patients suffering from mental fatigue caused due to emotional and psychological stress. The best part about this compound is that it does not have most of the common side effects linked with a few nootropics.
The information learned in the tasks reviewed so far was explicit, declarative, and consistent within each experiment. In contrast, probabilistic and procedural learning tasks require the subject to gradually extract a regularity in the associations among stimuli from multiple presentations in which the correct associations are only presented some of the time, with incorrect associations also presented. Findings are mixed in these tasks. Breitenstein and colleagues (2004, 2006) showed subjects drawings of common objects accompanied by nonsense word sounds in training sessions that extended over multiple days. They found faster learning of the to-be-learned, higher probability pairings between sessions (consistent with enhanced retention over longer delays). Breitenstein et al. (2004) found that this enhancement remained a year later. Schlösser et al. (2009) tested subjects’ probabilistic learning ability in the context of a functional magnetic resonance imaging (fMRI) study, comparing performance and brain activation with MPH and placebo. MPH did not affect learning performance as measured by accuracy. Although subjects were overall faster in responding on MPH, this difference was independent of the difficulty of the learning task, and the authors accordingly attributed it to response processes rather than learning.
The absence of a suitable home for this needed research on the current research funding landscape exemplifies a more general problem emerging now, as applications of neuroscience begin to reach out of the clinical setting and into classrooms, offices, courtrooms, nurseries, marketplaces, and battlefields (Farah, 2011). Most of the longstanding sources of public support for neuroscience research are dedicated to basic research or medical applications. As neuroscience is increasingly applied to solving problems outside the medical realm, it loses access to public funding. The result is products and systems reaching the public with less than adequate information about effectiveness and/or safety. Examples include cognitive enhancement with prescription stimulants, event-related potential and fMRI-based lie detection, neuroscience-based educational software, and anti-brain-aging computer programs. Research and development in nonmedical neuroscience are now primarily the responsibility of private corporations, which have an interest in promoting their products. Greater public support of nonmedical neuroscience research, including methods of cognitive enhancement, will encourage greater knowledge and transparency concerning the efficacy and safety of these products and will encourage the development of products based on social value rather than profit value.
I had tried 8 randomized days like the Adderall experiment to see whether I was one of the people whom modafinil energizes during the day. (The other way to use it is to skip sleep, which is my preferred use.) I rarely use it during the day since my initial uses did not impress me subjectively. The experiment was not my best - while it was double-blind randomized, the measurements were subjective, and not a good measure of mental functioning like dual n-back (DNB) scores which I could statistically compare from day to day or against my many previous days of dual n-back scores. Between my high expectation of finding the null result, the poor experiment quality, and the minimal effect it had (eliminating an already rare use), the value of this information was very small.
Starting from the studies in my meta-analysis, we can try to estimate an upper bound on how big any effect would be, if it actually existed. One of the most promising null results, Southon et al 1994, turns out to be not very informative: if we punch in the number of kids, we find that they needed a large effect size (d=0.81) before they could see anything:
Many of the positive effects of cognitive enhancers have been seen in experiments using rats. For example, scientists can train rats on a specific test, such as maze running, and then see if the "smart drug" can improve the rats' performance. It is difficult to see how many of these data can be applied to human learning and memory. For example, what if the "smart drug" made the rat hungry? Wouldn't a hungry rat run faster in the maze to receive a food reward than a non-hungry rat? Maybe the rat did not get any "smarter" and did not have any improved memory. Perhaps the rat ran faster simply because it was hungrier. Therefore, it was the rat's motivation to run the maze, not its increased cognitive ability that affected the performance. Thus, it is important to be very careful when interpreting changes observed in these types of animal learning and memory experiments.
Coconut oil was recommended by Pontus Granström on the Dual N-Back mailing list for boosting energy & mental clarity. It is fairly cheap (~$13 for 30 ounces) and tastes surprisingly good; it has a very bad reputation in some parts, but seems to be in the middle of a rehabilitation. Seth Robert’s Buttermind experiment found no mental benefits to coconut oil (and benefits to eating butter), but I wonder.
For obvious reasons, it’s difficult for researchers to know just how common the “smart drug” or “neuro-enhancing” lifestyle is. However, a few recent studies suggest cognition hacking is appealing to a growing number of people. A survey conducted in 2016 found that 15% of University of Oxford students were popping pills to stay competitive, a rate that mirrored findings from other national surveys of UK university students. In the US, a 2014 study found that 18% of sophomores, juniors, and seniors at Ivy League colleges had knowingly used a stimulant at least once during their academic career, and among those who had ever used uppers, 24% said they had popped a little helper on eight or more occasions. Anecdotal evidence suggests that pharmacological enhancement is also on the rise within the workplace, where modafinil, which treats sleep disorders, has become particularly popular.
Barbara Sahakian, a neuroscientist at Cambridge University, doesn’t dismiss the possibility of nootropics to enhance cognitive function in healthy people. She would like to see society think about what might be considered acceptable use and where it draws the line – for example, young people whose brains are still developing. But she also points out a big problem: long-term safety studies in healthy people have never been done. Most efficacy studies have only been short-term. “Proving safety and efficacy is needed,” she says.
Today piracetam is a favourite with students and young professionals looking for a way to boost their performance, though decades after Giurgea’s discovery, there still isn’t much evidence that it can improve the mental abilities of healthy people. It’s a prescription drug in the UK, though it’s not approved for medical use by the US Food and Drug Administration and can’t be sold as a dietary supplement either.
l-theanine ( is occasionally mentioned on Reddit or Imminst or LessWrong32 but is rarely a top-level post or article; this is probably because theanine was discovered a very long time ago (>61 years ago), and it’s a pretty straightforward substance. It’s a weak relaxant/anxiolytic (Google Scholar) which is possibly responsible for a few of the health benefits of tea, and which works synergistically with caffeine (and is probably why caffeine delivered through coffee feels different from the same amount consumed in tea - in one study, separate caffeine and theanine were a mixed bag, but the combination beat placebo on all measurements). The half-life in humans seems to be pretty short, with van der Pijl 2010 putting it ~60 minutes. This suggests to me that regular tea consumption over a day is best, or at least that one should lower caffeine use - combining caffeine and theanine into a single-dose pill has the problem of caffeine’s half-life being much longer so the caffeine will be acting after the theanine has been largely eliminated. The problem with getting it via tea is that teas can vary widely in their theanine levels and the variations don’t seem to be consistent either, nor is it clear how to estimate them. (If you take a large dose in theanine like 400mg in water, you can taste the sweetness, but it’s subtle enough I doubt anyone can actually distinguish the theanine levels of tea; incidentally, r-theanine - the useless racemic other version - anecdotally tastes weaker and less sweet than l-theanine.)
That study is also interesting for finding benefits to chronic piracetam+choline supplementation in the mice, which seems connected to a Russian study which reportedly found that piracetam (among other more obscure nootropics) increased secretion of BDNF in mice. See also Drug heuristics on a study involving choline supplementation in pregnant rats.↩
The ethics of cognitive enhancement have been extensively debated in the academic literature (e.g., Bostrom & Sandberg, 2009; Farah et al., 2004; Greely et al., 2008; Mehlman, 2004; Sahakian & Morein-Zamir, 2007). We do not attempt to review this aspect of the problem here. Rather, we attempt to provide a firmer empirical basis for these discussions. Despite the widespread interest in the topic and its growing public health implications, there remains much researchers do not know about the use of prescription stimulants for cognitive enhancement.
The one indisputable finding from the literature so far is that many people are seeking cognitive enhancement. Beyond that, the literature yields only partial and tentative answers to the questions just raised. Given the potential impact of cognitive enhancement on society, more research is needed. For research on the epidemiology of cognitive enhancement, studies focused on the cognitive-enhancement practices and experiences of students and nonstudent workers are needed. For research on the cognitive effects of prescription stimulants, larger samples are needed. Only with substantially larger samples will it be possible to assess small but potentially important benefits, as well as risks, and to distinguish individual differences in drug response. Large samples would also be required to compare these effects to the cognitive effects of improved sleep, exercise, nutrition, and stress management. To include more ecologically valid measures of cognition in academic and work environments would in addition require the equivalent of a large clinical trial.
Amphetamine – systematic reviews and meta-analyses report that low-dose amphetamine improved cognitive functions (e.g., inhibitory control, episodic memory, working memory, and aspects of attention) in healthy people and in individuals with ADHD.[21][22][23][25] A 2014 systematic review noted that low doses of amphetamine also improved memory consolidation, in turn leading to improved recall of information in non-ADHD youth.[23] It also improves task saliency (motivation to perform a task) and performance on tedious tasks that required a high degree of effort.[22][24][25]