Brain-imaging studies are consistent with the existence of small effects that are not reliably captured by the behavioral paradigms of the literature reviewed here. Typically with executive function tasks, reduced activation of task-relevant areas is associated with better performance and is interpreted as an indication of higher neural efficiency (e.g., Haier, Siegel, Tang, Abel, & Buchsbaum, 1992). Several imaging studies showed effects of stimulants on task-related activation while failing to find effects on cognitive performance. Although changes in brain activation do not necessarily imply functional cognitive changes, they are certainly suggestive and may well be more sensitive than behavioral measures. Evidence of this comes from a study of COMT variation and executive function. Egan and colleagues (2001) found a genetic effect on executive function in an fMRI study with sample sizes as small as 11 but did not find behavioral effects in these samples. The genetic effect on behavior was demonstrated in a separate study with over a hundred participants. In sum, d-AMP and MPH measurably affect the activation of task-relevant brain regions when participants’ task performance does not differ. This is consistent with the hypothesis (although by no means positive proof) that stimulants exert a true cognitive-enhancing effect that is simply too small to be detected in many studies.
Today piracetam is a favourite with students and young professionals looking for a way to boost their performance, though decades after Giurgea’s discovery, there still isn’t much evidence that it can improve the mental abilities of healthy people. It’s a prescription drug in the UK, though it’s not approved for medical use by the US Food and Drug Administration and can’t be sold as a dietary supplement either.

Analyzing the results is a little tricky because I was simultaneously running the first magnesium citrate self-experiment, which turned out to cause a quite complex result which looks like a gradually-accumulating overdose negating an initial benefit for net harm, and also toying with LLLT, which turned out to have a strong correlation with benefits. So for the potential small Noopept effect to not be swamped, I need to include those in the analysis. I designed the experiment to try to find the best dose level, so I want to look at an average Noopept effect but also the estimated effect at each dose size in case some are negative (especially in the case of 5-pills/60mg); I included the pilot experiment data as 10mg doses since they were also blind & randomized. Finally, missingness affects analysis: because not every variable is recorded for each date (what was the value of the variable for the blind randomized magnesium citrate before and after I finished that experiment? what value do you assign the Magtein variable before I bought it and after I used it all up?), just running a linear regression may not work exactly as one expects as various days get omitted because part of the data was missing.
That study is also interesting for finding benefits to chronic piracetam+choline supplementation in the mice, which seems connected to a Russian study which reportedly found that piracetam (among other more obscure nootropics) increased secretion of BDNF in mice. See also Drug heuristics on a study involving choline supplementation in pregnant rats.↩
With the right lifestyle and the right stack of supplements and nootropics, you can enjoy enhanced mental clarity, easier flow, and better vision. The best nootropics for your needs will depend on how much you want to spend, how often you want to take them, and what you want to take them for. Nutritional supplements should be taken daily, for the cumulative effect, but Smart drugs such as noopept and modafinil are usually taken on an as-needed basis, for those times when you are aiming for hyperfocus, better clarity, and better recall, or the ability to process a huge amount of incoming visual information quickly and accurately and to pick up on details that you might otherwise miss.

A poster or two on Longecity claimed that iodine supplementation had changed their eye color, suggesting a connection to the yellow-reddish element bromine - bromides being displaced by their chemical cousin, iodine. I was skeptical this was a real effect since I don’t know why visible amounts of either iodine or bromine would be in the eye, and the photographs produced were less than convincing. But it’s an easy thing to test, so why not?
Two studies investigated the effects of MPH on reversal learning in simple two-choice tasks (Clatworthy et al., 2009; Dodds et al., 2008). In these tasks, participants begin by choosing one of two stimuli and, after repeated trials with these stimuli, learn that one is usually rewarded and the other is usually not. The rewarded and nonrewarded stimuli are then reversed, and participants must then learn to choose the new rewarded stimulus. Although each of these studies found functional neuroimaging correlates of the effects of MPH on task-related brain activity (increased blood oxygenation level-dependent signal in frontal and striatal regions associated with task performance found by Dodds et al., 2008, using fMRI and increased dopamine release in the striatum as measured by increased raclopride displacement by Clatworthy et al., 2009, using PET), neither found reliable effects on behavioral performance in these tasks. The one significant result concerning purely behavioral measures was Clatworthy et al.’s (2009) finding that participants who scored higher on a self-report personality measure of impulsivity showed more performance enhancement with MPH. MPH’s effect on performance in individuals was also related to its effects on individuals’ dopamine activity in specific regions of the caudate nucleus.
“Certain people might benefit from certain combinations of certain things,” he told me. “But across populations, there is still no conclusive proof that substances of this class improve cognitive functions.” And with no way to reliably measure the impact of a given substance on one’s mental acuity, one’s sincere beliefs about “what works” probably have a lot to do with, say, how demanding their day was, or whether they ate breakfast, or how susceptible they are to the placebo effect.
Modafinil is a prescription smart drug most commonly given to narcolepsy patients, as it promotes wakefulness. In addition, users indicate that this smart pill helps them concentrate and boosts their motivation. Owing to Modafinil, the feeling of fatigue is reduced, and people report that their everyday functions improve because they can manage their time and resources better, as a result reaching their goals easier.
“Certain people might benefit from certain combinations of certain things,” he told me. “But across populations, there is still no conclusive proof that substances of this class improve cognitive functions.” And with no way to reliably measure the impact of a given substance on one’s mental acuity, one’s sincere beliefs about “what works” probably have a lot to do with, say, how demanding their day was, or whether they ate breakfast, or how susceptible they are to the placebo effect.
COGNITUNE is for informational purposes only, and should not be considered medical advice, diagnosis or treatment recommendations. Always consult with your doctor or primary care physician before using any nutraceuticals, dietary supplements, or prescription medications. Seeking a proper diagnosis from a certified medical professional is vital for your health.
The nonmedical use of substances—often dubbed smart drugs—to increase memory or concentration is known as pharmacological cognitive enhancement (PCE), and it rose in all 15 nations included in the survey. The study looked at prescription medications such as Adderall and Ritalin—prescribed medically to treat attention deficit hyperactivity disorder (ADHD)—as well as the sleep-disorder medication modafinil and illegal stimulants such as cocaine.
Amphetamine – systematic reviews and meta-analyses report that low-dose amphetamine improved cognitive functions (e.g., inhibitory control, episodic memory, working memory, and aspects of attention) in healthy people and in individuals with ADHD.[21][22][23][25] A 2014 systematic review noted that low doses of amphetamine also improved memory consolidation, in turn leading to improved recall of information in non-ADHD youth.[23] It also improves task saliency (motivation to perform a task) and performance on tedious tasks that required a high degree of effort.[22][24][25]
×