Imagine a pill you can take to speed up your thought processes, boost your memory, and make you more productive. If it sounds like the ultimate life hack, you’re not alone. There are pills that promise that out there, but whether they work is complicated. Here are the most popular cognitive enhancers available, and what science actually says about them.
“Smart Drugs” are chemical substances that enhance cognition and memory or facilitate learning. However, within this general umbrella of “things you can eat that make you smarter,” there are many variations as far as methods of action within the body, perceptible (and measurable) effects, potential for use and abuse, and the spillover impact on the body’s non-cognitive processes.
A large review published in 2011 found that the drug aids with the type of memory that allows us to explicitly remember past events (called long-term conscious memory), as opposed to the type that helps us remember how to do things like riding a bicycle without thinking about it (known as procedural or implicit memory.) The evidence is mixed on its effect on other types of executive function, such as planning or ability on fluency tests, which measure a person’s ability to generate sets of data—for example, words that begin with the same letter. 
“Who doesn’t want to maximize their cognitive ability? Who doesn’t want to maximize their muscle mass?” asks Murali Doraiswamy, who has led several trials of cognitive enhancers at Duke University Health System and has been an adviser to pharmaceutical and supplement manufacturers as well as the Food and Drug Administration. He attributes the demand to an increasingly knowledge-based society that values mental quickness and agility above all else.
A quick search for drugs that make you smarter will lead you to the discovery of piracetam. Piracetam is the first synthetic smart drug of its kind. All other racetams derive from Piracetam. Some are far more potent, but they may also carry more side effects. Piracetam is an allosteric modulator of acetylcholine receptors. In other words, it enhances acetylcholine synthesis which boosts cognitive function.
Table 3 lists the results of 24 tasks from 22 articles on the effects of d-AMP or MPH on learning, assessed by a variety of declarative and nondeclarative memory tasks. Results for the 24 tasks are evenly split between enhanced learning and null results, but they yield a clearer pattern when the nature of the learning task and the retention interval are taken into account. In general, with single exposures of verbal material, no benefits are seen immediately following learning, but later recall and recognition are enhanced. Of the six articles reporting on memory performance (Camp-Bruno & Herting, 1994; Fleming, Bigelow, Weinberger, & Goldberg, 1995; Rapoport, Busbaum, & Weingartner, 1980; Soetens, D’Hooge, & Hueting, 1993; Unrug, Coenen, & van Luijtelaar, 1997; Zeeuws & Soetens 2007), encompassing eight separate experiments, only one of the experiments yielded significant memory enhancement at short delays (Rapoport et al., 1980). In contrast, retention was reliably enhanced by d-AMP when subjects were tested after longer delays, with recall improved after 1 hr through 1 week (Soetens, Casaer, D’Hooge, & Hueting, 1995; Soetens et al., 1993; Zeeuws & Soetens, 2007). Recognition improved after 1 week in one study (Soetens et al., 1995), while another found recognition improved after 2 hr (Mintzer & Griffiths, 2007). The one long-term memory study to examine the effects of MPH found a borderline-significant reduction in errors when subjects answered questions about a story (accompanied by slides) presented 1 week before (Brignell, Rosenthal, & Curran, 2007).
Nondrug cognitive-enhancement methods include the high tech and the low. An example of the former is transcranial magnetic stimulation (TMS), whereby weak currents are induced in specific brain areas by magnetic fields generated outside the head. TMS is currently being explored as a therapeutic modality for neuropsychiatric conditions as diverse as depression and ADHD and is capable of enhancing the cognition of normal healthy people (e.g., Kirschen, Davis-Ratner, Jerde, Schraedley-Desmond, & Desmond, 2006). An older technique, transcranial direct current stimulation (tDCS), has become the subject of renewed research interest and has proven capable of enhancing the cognitive performance of normal healthy individuals in a variety of tasks. For example, Flöel, Rösser, Michka, Knecht, and Breitenstein (2008) reported enhancement of learning and Dockery, Hueckel-Weng, Birbaumer, and Plewnia (2009) reported enhancement of planning with tDCS.
Despite decades of study, a full picture has yet to emerge of the cognitive effects of the classic psychostimulants and modafinil. Part of the problem is that getting rats, or indeed students, to do puzzles in laboratories may not be a reliable guide to the drugs’ effects in the wider world. Drugs have complicated effects on individuals living complicated lives. Determining that methylphenidate enhances cognition in rats by acting on their prefrontal cortex doesn’t tell you the potential impact that its effects on mood or motivation may have on human cognition.
I split the 2 pills into 4 doses for each hour from midnight to 4 AM. 3D driver issues in Debian unstable prevented me from using Brain Workshop, so I don’t have any DNB scores to compare with the armodafinil DNB scores. I had the subjective impression that I was worse off with the Modalert, although I still managed to get a fair bit done so the deficits couldn’t’ve been too bad. The apathy during the morning felt worse than armodafinil, but that could have been caused by or exacerbated by an unexpected and very stressful 2 hour drive through rush hour and multiple accidents; the quick hour-long nap at 10 AM was half-waking half-light-sleep according to the Zeo, but seemed to help a bit. As before, I began to feel better in the afternoon and by evening felt normal, doing my usual reading. That night, the Zeo recorded my sleep as lasting ~9:40, when it was usually more like 8:40-9:00 (although I am not sure that this was due to the modafinil inasmuch as once a week or so I tend to sleep in that long, as I did a few days later without any influence from the modafinil); assuming the worse, the nap and extra sleep cost me 2 hours for a net profit of ~7 hours. While it’s not clear how modafinil affects recovery sleep (see the footnote in the essay), it’s still interesting to ponder the benefits of merely being able to delay sleep18.
These are some of the best Nootropics for focus and other benefits that they bring with them. They might intrigue you in trying out any of these Nootropics to boost your brain’s power. However, you need to do your research before choosing the right Nootropic. One way of doing so is by consulting a doctor to know the best Nootropic for you. Another way to go about selecting a Nootropic supplement is choosing the one with clinically tested natural Nootropic substances. There are many sources where you can find the right kind of Nootropics for your needs, and one of them is AlternaScript.
With so many different ones to choose from, choosing the best nootropics for you can be overwhelming at times. As usual, a decision this important will require research. Study up on the top nootropics which catch your eye the most. The nootropics you take will depend on what you want the enhancement for. The ingredients within each nootropic determine its specific function. For example, some nootropics contain ginkgo biloba, which can help memory, thinking speed, and increase attention span. Check the nootropic ingredients as you determine what end results you want to see. Some nootropics supplements can increase brain chemicals such as dopamine and serotonin. An increase in dopamine levels can be very useful for memory, alertness, reward and more. Many healthy adults, as well as college students take nootropics. This really supports the central nervous system and the brain.
A large review published in 2011 found that the drug aids with the type of memory that allows us to explicitly remember past events (called long-term conscious memory), as opposed to the type that helps us remember how to do things like riding a bicycle without thinking about it (known as procedural or implicit memory.) The evidence is mixed on its effect on other types of executive function, such as planning or ability on fluency tests, which measure a person’s ability to generate sets of data—for example, words that begin with the same letter. 
From the standpoint of absorption, the drinking of tobacco juice and the interaction of the infusion or concoction with the small intestine is a highly effective method of gastrointestinal nicotine administration. The epithelial area of the intestines is incomparably larger than the mucosa of the upper tract including the stomach, and the small intestine represents the area with the greatest capacity for absorption (Levine 1983:81-83). As practiced by most of the sixty-four tribes documented here, intoxicated states are achieved by drinking tobacco juice through the mouth and/or nose…The large intestine, although functionally little equipped for absorption, nevertheless absorbs nicotine that may have passed through the small intestine.
I decided to try out day-time usage on 2 consecutive days, taking the 100mg at noon or 1 PM. On both days, I thought I did feel more energetic but nothing extraordinary (maybe not even as strong as the nicotine), and I had trouble falling asleep on Halloween, thinking about the meta-ethics essay I had been writing diligently on both days. Not a good use compared to staying up a night.
^ EFSA Panel on Dietetic Products, Nutrition and Allergies; European Food Safety Authority (EFSA), Parma, Italy (2011). "Scientific Opinion on the substantiation of health claims related to L-theanine from Camellia sinensis (L.) Kuntze (tea) and improvement of cognitive function (ID 1104, 1222, 1600, 1601, 1707, 1935, 2004, 2005), alleviation of psychological stress (ID 1598, 1601), maintenance of normal sleep (ID 1222, 1737, 2004) and reduction of menstrual discomfort (ID 1599) pursuant to Article 13(1) of Regulation (EC) No 1924/2006". EFSA Journal. 9 (6): 2238. doi:10.2903/j.efsa.2011.2238.
×