One might suggest just going to the gym or doing other activities which may increase endogenous testosterone secretion. This would be unsatisfying to me as it introduces confounds: the exercise may be doing all the work in any observed effect, and certainly can’t be blinded. And blinding is especially important because the 2011 review discusses how some studies report that the famed influence of testosterone on aggression (eg. Wedrifid’s anecdote above) is a placebo effect caused by the folk wisdom that testosterone causes aggression & rage!

No. There are mission essential jobs that require you to live on base sometimes. Or a first term person that is required to live on base. Or if you have proven to not be as responsible with rent off base as you should be so your commander requires you to live on base. Or you’re at an installation that requires you to live on base during your stay. Or the only affordable housing off base puts you an hour away from where you work. It isn’t simple. The fact that you think it is tells me you are one of the “dumb@$$es” you are referring to above.
An additional complexity, related to individual differences, concerns dosage. This factor, which varies across studies and may be fixed or determined by participant body weight within a study, undoubtedly influences the cognitive effects of stimulant drugs. Furthermore, single-unit recordings with animals and, more recently, imaging of humans indicate that the effects of stimulant dose are nonmonotonic; increases enhance prefrontal function only up to a point, with further increases impairing function (e.g., Arnsten, 1998; Mattay et al., 2003; Robbins & Arnsten, 2009). Yet additional complexity comes from the fact that the optimal dosage depends on the same kinds of individual characteristics just discussed and on the task (Mattay et al., 2003).

For Malcolm Gladwell, “the thing with doping is that it allows you to train harder than you would have done otherwise.” He argues that we cannot easily call someone a cheater on the basis of having used a drug for this purpose. The equivalent, he explains, would be a student who steals an exam paper from the teacher, and then instead of going home and not studying at all, goes to a library and studies five times harder.
And there are other uses that may make us uncomfortable. The military is interested in modafinil as a drug to maintain combat alertness. A drug such as propranolol could be used to protect soldiers from the horrors of war. That could be considered a good thing – post-traumatic stress disorder is common in soldiers. But the notion of troops being unaffected by their experiences makes many feel uneasy.
For the sake of organizing the review, we have divided the literature according to the general type of cognitive process being studied, with sections devoted to learning and to various kinds of executive function. Executive function is a broad and, some might say, vague concept that encompasses the processes by which individual perceptual, motoric, and mnemonic abilities are coordinated to enable appropriate, flexible task performance, especially in the face of distracting stimuli or alternative competing responses. Two major aspects of executive function are working memory and cognitive control, responsible for the maintenance of information in a short-term active state for guiding task performance and responsible for inhibition of irrelevant information or responses, respectively. A large enough literature exists on the effects of stimulants on these two executive abilities that separate sections are devoted to each. In addition, a final section includes studies of miscellaneous executive abilities including planning, fluency, and reasoning that have also been the subjects of published studies.
The one indisputable finding from the literature so far is that many people are seeking cognitive enhancement. Beyond that, the literature yields only partial and tentative answers to the questions just raised. Given the potential impact of cognitive enhancement on society, more research is needed. For research on the epidemiology of cognitive enhancement, studies focused on the cognitive-enhancement practices and experiences of students and nonstudent workers are needed. For research on the cognitive effects of prescription stimulants, larger samples are needed. Only with substantially larger samples will it be possible to assess small but potentially important benefits, as well as risks, and to distinguish individual differences in drug response. Large samples would also be required to compare these effects to the cognitive effects of improved sleep, exercise, nutrition, and stress management. To include more ecologically valid measures of cognition in academic and work environments would in addition require the equivalent of a large clinical trial.
Sure, those with a mental illness may very well need a little more monitoring to make sure they take their medications, but will those suffering from a condition with hallmark symptoms of paranoia and anxiety be helped by consuming a technology that quite literally puts a tracking device inside their body? For patients hearing voices telling them that they're being watched, a monitoring device may be a hard pill to swallow.
By the end of 2009, at least 25 studies reported surveys of college students’ rates of nonmedical stimulant use. Of the studies using relatively smaller samples, prevalence was, in chronological order, 16.6% (lifetime; Babcock & Byrne, 2000), 35.3% (past year; Low & Gendaszek, 2002), 13.7% (lifetime; Hall, Irwin, Bowman, Frankenberger, & Jewett, 2005), 9.2% (lifetime; Carroll, McLaughlin, & Blake, 2006), and 55% (lifetime, fraternity students only; DeSantis, Noar, & Web, 2009). Of the studies using samples of more than a thousand students, somewhat lower rates of nonmedical stimulant use were found, although the range extends into the same high rates as the small studies: 2.5% (past year, Ritalin only; Teter, McCabe, Boyd, & Guthrie, 2003), 5.4% (past year; McCabe & Boyd, 2005), 4.1% (past year; McCabe, Knight, Teter, & Wechsler, 2005), 11.2% (past year; Shillington, Reed, Lange, Clapp, & Henry, 2006), 5.9% (past year; Teter, McCabe, LaGrange, Cranford, & Boyd, 2006), 16.2% (lifetime; White, Becker-Blease, & Grace-Bishop, 2006), 1.7% (past month; Kaloyanides, McCabe, Cranford, & Teter, 2007), 10.8% (past year; Arria, O’Grady, Caldeira, Vincent, & Wish, 2008); 5.3% (MPH only, lifetime; Du-Pont, Coleman, Bucher, & Wilford, 2008); 34% (lifetime; DeSantis, Webb, & Noar, 2008), 8.9% (lifetime; Rabiner et al., 2009), and 7.5% (past month; Weyandt et al., 2009).

as scientific papers become much more accessible online due to Open Access, digitization by publishers, and cheap hosting for pirates, the available knowledge about nootropics increases drastically. This reduces the perceived risk by users, and enables them to educate themselves and make much more sophisticated estimates of risk and side-effects and benefits. (Take my modafinil page: in 1997, how could an average person get their hands on any of the papers available up to that point? Or get detailed info like the FDA’s prescribing guide? Even assuming they had a computer & Internet?)
Both nootropics startups provide me with samples to try. In the case of Nootrobox, it is capsules called Sprint designed for a short boost of cognitive enhancement. They contain caffeine – the equivalent of about a cup of coffee, and L-theanine – about 10 times what is in a cup of green tea, in a ratio that is supposed to have a synergistic effect (all the ingredients Nootrobox uses are either regulated as supplements or have a “generally regarded as safe” designation by US authorities)

Factor analysis. The strategy: read in the data, drop unnecessary data, impute missing variables (data is too heterogeneous and collected starting at varying intervals to be clean), estimate how many factors would fit best, factor analyze, pick the ones which look like they match best my ideas of what productive is, extract per-day estimates, and finally regress LLLT usage on the selected factors to look for increases.
By the end of 2009, at least 25 studies reported surveys of college students’ rates of nonmedical stimulant use. Of the studies using relatively smaller samples, prevalence was, in chronological order, 16.6% (lifetime; Babcock & Byrne, 2000), 35.3% (past year; Low & Gendaszek, 2002), 13.7% (lifetime; Hall, Irwin, Bowman, Frankenberger, & Jewett, 2005), 9.2% (lifetime; Carroll, McLaughlin, & Blake, 2006), and 55% (lifetime, fraternity students only; DeSantis, Noar, & Web, 2009). Of the studies using samples of more than a thousand students, somewhat lower rates of nonmedical stimulant use were found, although the range extends into the same high rates as the small studies: 2.5% (past year, Ritalin only; Teter, McCabe, Boyd, & Guthrie, 2003), 5.4% (past year; McCabe & Boyd, 2005), 4.1% (past year; McCabe, Knight, Teter, & Wechsler, 2005), 11.2% (past year; Shillington, Reed, Lange, Clapp, & Henry, 2006), 5.9% (past year; Teter, McCabe, LaGrange, Cranford, & Boyd, 2006), 16.2% (lifetime; White, Becker-Blease, & Grace-Bishop, 2006), 1.7% (past month; Kaloyanides, McCabe, Cranford, & Teter, 2007), 10.8% (past year; Arria, O’Grady, Caldeira, Vincent, & Wish, 2008); 5.3% (MPH only, lifetime; Du-Pont, Coleman, Bucher, & Wilford, 2008); 34% (lifetime; DeSantis, Webb, & Noar, 2008), 8.9% (lifetime; Rabiner et al., 2009), and 7.5% (past month; Weyandt et al., 2009).
Another interpretation of the mixed results in the literature is that, in some cases at least, individual differences in response to stimulants have led to null results when some participants in the sample are in fact enhanced and others are not. This possibility is not inconsistent with the previously mentioned ones; both could be at work. Evidence has already been reviewed that ability level, personality, and COMT genotype modulate the effect of stimulants, although most studies in the literature have not broken their samples down along these dimensions. There may well be other as-yet-unexamined individual characteristics that determine drug response. The equivocal nature of the current literature may reflect a mixture of substantial cognitive-enhancement effects for some individuals, diluted by null effects or even counteracted by impairment in others.
I split the 2 pills into 4 doses for each hour from midnight to 4 AM. 3D driver issues in Debian unstable prevented me from using Brain Workshop, so I don’t have any DNB scores to compare with the armodafinil DNB scores. I had the subjective impression that I was worse off with the Modalert, although I still managed to get a fair bit done so the deficits couldn’t’ve been too bad. The apathy during the morning felt worse than armodafinil, but that could have been caused by or exacerbated by an unexpected and very stressful 2 hour drive through rush hour and multiple accidents; the quick hour-long nap at 10 AM was half-waking half-light-sleep according to the Zeo, but seemed to help a bit. As before, I began to feel better in the afternoon and by evening felt normal, doing my usual reading. That night, the Zeo recorded my sleep as lasting ~9:40, when it was usually more like 8:40-9:00 (although I am not sure that this was due to the modafinil inasmuch as once a week or so I tend to sleep in that long, as I did a few days later without any influence from the modafinil); assuming the worse, the nap and extra sleep cost me 2 hours for a net profit of ~7 hours. While it’s not clear how modafinil affects recovery sleep (see the footnote in the essay), it’s still interesting to ponder the benefits of merely being able to delay sleep18.
…The Fate of Nicotine in the Body also describes Battelle’s animal work on nicotine absorption. Using C14-labeled nicotine in rabbits, the Battelle scientists compared gastric absorption with pulmonary absorption. Gastric absorption was slow, and first pass removal of nicotine by the liver (which transforms nicotine into inactive metabolites) was demonstrated following gastric administration, with consequently low systemic nicotine levels. In contrast, absorption from the lungs was rapid and led to widespread distribution. These results show that nicotine absorbed from the stomach is largely metabolized by the liver before it has a chance to get to the brain. That is why tobacco products have to be puffed, smoked or sucked on, or absorbed directly into the bloodstream (i.e., via a nicotine patch). A nicotine pill would not work because the nicotine would be inactivated before it reached the brain.

Aniracetam is known as one of the smart pills with the widest array of uses. From benefits for dementia patients and memory boost in adults with healthy brains, to the promotion of brain damage recovery. It also improves the quality of sleep, what affects the overall increase in focus during the day. Because it supports the production of dopamine and serotonin, it elevates our mood and helps fight depression and anxiety.

My first time was relatively short: 10 minutes around the F3/F4 points, with another 5 minutes to the forehead. Awkward holding it up against one’s head, and I see why people talk of LED helmets, it’s boring waiting. No initial impressions except maybe feeling a bit mentally cloudy, but that goes away within 20 minutes of finishing when I took a nap outside in the sunlight. Lostfalco says Expectations: You will be tired after the first time for 2 to 24 hours. It’s perfectly normal., but I’m not sure - my dog woke me up very early and disturbed my sleep, so maybe that’s why I felt suddenly tired. On the second day, I escalated to 30 minutes on the forehead, and tried an hour on my finger joints. No particular observations except less tiredness than before and perhaps less joint ache. Third day: skipped forehead stimulation, exclusively knee & ankle. Fourth day: forehead at various spots for 30 minutes; tiredness 5/6/7/8th day (11/12/13/4): skipped. Ninth: forehead, 20 minutes. No noticeable effects.
Regardless, while in the absence of piracetam, I did notice some stimulant effects (somewhat negative - more aggressive than usual while driving) and similar effects to piracetam, I did not notice any mental performance beyond piracetam when using them both. The most I can say is that on some nights, I seemed to be less easily tired when writing or editing or n-backing (and I felt less tired than ICON 2011 than ICON 2010), but those were also often nights I was also trying out all the other things I had gotten in that order from Smart Powders, and I am still dis-entangling what was responsible. (Probably the l-theanine or sulbutiamine.)
While these two compounds may not be as exciting as a super pill that instantly unlocks the full potential of your brain, they currently have the most science to back them up. And, as Patel explains, they’re both relatively safe for healthy individuals of most ages. Patel explains that a combination of caffeine and L-theanine is the most basic supplement stack (or combined dose) because the L-theanine can help blunt the anxiety and “shakiness” that can come with ingesting too much caffeine.
My intent here is not to promote illegal drugs or promote the abuse of prescription drugs. In fact, I have identified which drugs require a prescription. If you are a servicemember and you take a drug (such as Modafinil and Adderall) without a prescription, then you will fail a urinalysis test. Thus, you will most likely be discharged from the military.
Besides Adderall, I also purchased on Silk Road 5x250mg pills of armodafinil. The price was extremely reasonable, 1.5btc or roughly $23 at that day’s exchange rate; I attribute the low price to the seller being new and needing feedback, and offering a discount to induce buyers to take a risk on him. (Buyers bear a large risk on Silk Road since sellers can easily physically anonymize themselves from their shipment, but a buyer can be found just by following the package.) Because of the longer active-time, I resolved to test the armodafinil not during the day, but with an all-nighter.

Attention-deficit/hyperactivity disorder (ADHD), a behavioral syndrome characterized by inattention and distractibility, restlessness, inability to sit still, and difficulty concentrating on one thing for any period of time. ADHD most commonly occurs in children, though an increasing number of adults are being diagnosed with the disorder. ADHD is three times more…


The demands of university studies, career, and family responsibilities leaves people feeling stretched to the limit. Extreme stress actually interferes with optimal memory, focus, and performance. The discovery of nootropics and vitamins that make you smarter has provided a solution to help college students perform better in their classes and professionals become more productive and efficient at work.

My first dose on 1 March 2017, at the recommended 0.5ml/1.5mg was miserable, as I felt like I had the flu and had to nap for several hours before I felt well again, requiring 6h to return to normal; after waiting a month, I tried again, but after a week of daily dosing in May, I noticed no benefits; I tried increasing to 3x1.5mg but this immediately caused another afternoon crash/nap on 18 May. So I scrapped my cytisine. Oh well.


Eugeroics (armodafinil and modafinil) – are classified as "wakefulness promoting" agents; modafinil increased alertness, particularly in sleep deprived individuals, and was noted to facilitate reasoning and problem solving in non-ADHD youth.[23] In a systematic review of small, preliminary studies where the effects of modafinil were examined, when simple psychometric assessments were considered, modafinil intake appeared to enhance executive function.[27] Modafinil does not produce improvements in mood or motivation in sleep deprived or non-sleep deprived individuals.[28]
×