Tyrosine (Examine.com) is an amino acid; people on the Imminst.org forums (as well as Wikipedia) suggest that it helps with energy and coping with stress. I ordered 4oz (bought from Smart Powders) to try it out, and I began taking 1g with my usual caffeine+piracetam+choline mix. It does not dissolve easily in hot water, and is very chalky and not especially tasty. I have not noticed any particular effects from it.
Discussions of PEA mention that it’s almost useless without a MAOI to pave the way; hence, when I decided to get deprenyl and noticed that deprenyl is a MAOI, I decided to also give PEA a second chance in conjunction with deprenyl. Unfortunately, in part due to my own shenanigans, Nubrain canceled the deprenyl order and so I have 20g of PEA sitting around. Well, it’ll keep until such time as I do get a MAOI.
First half at 6 AM; second half at noon. Wrote a short essay I’d been putting off and napped for 1:40 from 9 AM to 10:40. This approach seems to work a little better as far as the aboulia goes. (I also bother to smell my urine this time around - there’s a definite off smell to it.) Nights: 10:02; 8:50; 10:40; 7:38 (2 bad nights of nasal infections); 8:28; 8:20; 8:43 (▆▃█▁▂▂▃).
Imagine a pill you can take to speed up your thought processes, boost your memory, and make you more productive. If it sounds like the ultimate life hack, you’re not alone. There are pills that promise that out there, but whether they work is complicated. Here are the most popular cognitive enhancers available, and what science actually says about them.

The evidence? Found helpful in reducing bodily twitching in myoclonus epilepsy, a rare disorder, but otherwise little studied. Mixed evidence from a study published in 1991 suggests it may improve memory in subjects with cognitive impairment. A meta-analysis published in 2010 that reviewed studies of piracetam and other racetam drugs found that piracetam was somewhat helpful in improving cognition in people who had suffered a stroke or brain injury; the drugs’ effectiveness in treating depression and reducing anxiety was more significant.


Many laboratory tasks have been developed to study working memory, each of which taxes to varying degrees aspects such as the overall capacity of working memory, its persistence over time, and its resistance to interference either from task-irrelevant stimuli or among the items to be retained in working memory (i.e., cross-talk). Tasks also vary in the types of information to be retained in working memory, for example, verbal or spatial information. The question of which of these task differences correspond to differences between distinct working memory systems and which correspond to different ways of using a single underlying system is a matter of debate (e.g., D’Esposito, Postle, & Rypma, 2000; Owen, 2000). For the present purpose, we ignore this question and simply ask, Do MPH and d-AMP affect performance in the wide array of tasks that have been taken to operationalize working memory? If the literature does not yield a unanimous answer to this question, then what factors might be critical in determining whether stimulant effects are manifest?
Unfortunately, cognitive enhancement falls between the stools of research funding, which makes it unlikely that such research programs will be carried out. Disease-oriented funders will, by definition, not support research on normal healthy individuals. The topic intersects with drug abuse research only in the assessment of risk, leaving out the study of potential benefits, as well as the comparative benefits of other enhancement methods. As a fundamentally applied research question, it will not qualify for support by funders of basic science. The pharmaceutical industry would be expected to support such research only if cognitive enhancement were to be considered a legitimate indication by the FDA, which we hope would happen only after considerably more research has illuminated its risks, benefits, and societal impact. Even then, industry would have little incentive to delve into all of the issues raised here, including the comparison of drug effects to nonpharmaceutical means of enhancing cognition.
Serotonin, or 5-hydroxytryptamine (5-HTP), is another primary neurotransmitter and controls major features of the mental landscape including mood, sleep and appetite. Serotonin is produced within the body by exposure, which is one reason that the folk-remedy of “getting some sun” to fight depression is scientifically credible. Many foods contain natural serotonergic (serotonin-promoting or releasing) compounds, including the well-known chemical L-Tryptophan found in turkey, which can promote sleep after big Thanksgiving dinners.

The evidence? Found helpful in reducing bodily twitching in myoclonus epilepsy, a rare disorder, but otherwise little studied. Mixed evidence from a study published in 1991 suggests it may improve memory in subjects with cognitive impairment. A meta-analysis published in 2010 that reviewed studies of piracetam and other racetam drugs found that piracetam was somewhat helpful in improving cognition in people who had suffered a stroke or brain injury; the drugs’ effectiveness in treating depression and reducing anxiety was more significant.

Sulbutiamine, mentioned earlier as a cholinergic smart drug, can also be classed a dopaminergic, although its mechanism is counterintuitive: by reducing the release of dopamine in the brain’s prefrontal cortex, the density of dopamine receptors actually increase after continued Sulbutiamine exposure, through a compensatory mechanism. (This provides an interesting example of how dividing smart drugs into sensible “classes” is a matter of taste as well as science, especially since many of them create their discernable neural effects through still undefined mechanisms.)
COGNITUNE is for informational purposes only, and should not be considered medical advice, diagnosis or treatment recommendations. Always consult with your doctor or primary care physician before using any nutraceuticals, dietary supplements, or prescription medications. Seeking a proper diagnosis from a certified medical professional is vital for your health.
At this point I began to get bored with it and the lack of apparent effects, so I began a pilot trial: I’d use the LED set for 10 minutes every few days before 2PM, record, and in a few months look for a correlation with my daily self-ratings of mood/productivity (for 2.5 years I’ve asked myself at the end of each day whether I did more, the usual, or less work done that day than average, so 2=below-average, 3=average, 4=above-average; it’s ad hoc, but in some factor analyses I’ve been playing with, it seems to load on a lot of other variables I’ve measured, so I think it’s meaningful).
After I ran out of creatine, I noticed the increased difficulty, and resolved to buy it again at some point; many months later, there was a Smart Powders sale so bought it in my batch order, $12 for 1000g. As before, it made Taekwondo classes a bit easier. I paid closer attention this second time around and noticed that as one would expect, it only helped with muscular fatigue and did nothing for my aerobic issues. (I hate aerobic exercise, so it’s always been a weak point.) I eventually capped it as part of a sulbutiamine-DMAE-creatine-theanine mix. This ran out 1 May 2013. In March 2014, I spent $19 for 1kg of micronized creatine monohydrate to resume creatine use and also to use it as a placebo in a honey-sleep experiment testing Seth Roberts’s claim that a few grams of honey before bedtime would improve sleep quality: my usual flour placebo being unusable because the mechanism might be through simple sugars, which flour would digest into. (I did not do the experiment: it was going to be a fair amount of messy work capping the honey and creatine, and I didn’t believe Roberts’s claims for a second - my only reason to do it would be to prove the claim wrong but he’d just ignore me and no one else cares.) I didn’t try measuring out exact doses but just put a spoonful in my tea each morning (creatine is tasteless). The 1kg lasted from 25 March to 18 September or 178 days, so ~5.6g & $0.11 per day.
But, thanks to the efforts of a number of remarkable scientists, researchers and plain-old neurohackers, we are beginning to put together a “whole systems” model of how all the different parts of the human brain work together and how they mesh with the complex regulatory structures of the body. It’s going to take a lot more data and collaboration to dial this model in, but already we are empowered to design stacks that can meaningfully deliver on the promise of nootropics “to enhance the quality of subjective experience and promote cognitive health, while having extremely low toxicity and possessing very few side effects.” It’s a type of brain hacking that is intended to produce noticeable cognitive benefits.
In my last post, I talked about the idea that there is a resource that is necessary for self-control…I want to talk a little bit about the candidate for this resource, glucose. Could willpower fail because the brain is low on sugar? Let’s look at the numbers. A well-known statistic is that the brain, while only 2% of body weight, consumes 20% of the body’s energy. That sounds like the brain consumes a lot of calories, but if we assume a 2,400 calorie/day diet - only to make the division really easy - that’s 100 calories per hour on average, 20 of which, then, are being used by the brain. Every three minutes, then, the brain - which includes memory systems, the visual system, working memory, then emotion systems, and so on - consumes one (1) calorie. One. Yes, the brain is a greedy organ, but it’s important to keep its greediness in perspective… Suppose, for instance, that a brain in a person exerting their willpower - resisting eating brownies or what have you - used twice as many calories as a person not exerting willpower. That person would need an extra one third of a calorie per minute to make up the difference compared to someone not exerting willpower. Does exerting self control burn more calories?
The question of whether stimulants are smart pills in a pragmatic sense cannot be answered solely by consideration of the statistical significance of the difference between stimulant and placebo. A drug with tiny effects, even if statistically significant, would not be a useful cognitive enhancer for most purposes. We therefore report Cohen’s d effect size measure for published studies that provide either means and standard deviations or relevant F or t statistics (Thalheimer & Cook, 2002). More generally, with most sample sizes in the range of a dozen to a few dozen, small effects would not reliably be found.
The use of prescription stimulants is especially prevalent among students.[9] Surveys suggest that 0.7–4.5% of German students have used cognitive enhancers in their lifetimes.[10][11][12] Stimulants such as dimethylamylamine and methylphenidate are used on college campuses and by younger groups.[13] Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily used for enhancement of academic performance rather than as recreational drugs.[14][15][16] Several factors positively and negatively influence an individual's willingness to use a drug for the purpose of enhancing cognitive performance. Among them are personal characteristics, drug characteristics, and characteristics of the social context.[10][11][17][18]
×