Similarly, we could try applying Nick Bostrom’s reversal test and ask ourselves, how would we react to a virus which had no effect but to eliminate sleep from alternating nights and double sleep in the intervening nights? We would probably grouch about it for a while and then adapt to our new hedonistic lifestyle of partying or working hard. On the other hand, imagine the virus had the effect of eliminating normal sleep but instead, every 2 minutes, a person would fall asleep for a minute. This would be disastrous! Besides the most immediate problems like safely driving vehicles, how would anything get done? You would hold a meeting and at any point, a third of the participants would be asleep. If the virus made it instead 2 hours on, one hour off, that would be better but still problematic: there would be constant interruptions. And so on, until we reach our present state of 16 hours on, 8 hours off. Given that we rejected all the earlier buffer sizes, one wonders if 16:8 can be defended as uniquely suited to circumstances. Is that optimal? It may be, given the synchronization with the night-day cycle, but I wonder; rush hour alone stands as an argument against synchronized sleep - wouldn’t our infrastructure would be much cheaper if it only had to handle the average daily load rather than cope with the projected peak loads? Might not a longer cycle be better? The longer the day, the less we are interrupted by sleep; it’s a hoary cliche about programmers that they prefer to work in long sustained marathons during long nights rather than sprint occasionally during a distraction-filled day, to the point where some famously adopt a 28 hour day (which evenly divides a week into 6 days). Are there other occupations which would benefit from a 20 hour waking period? Or 24 hour waking period? We might not know because without chemical assistance, circadian rhythms would overpower anyone attempting such schedules. It certainly would be nice if one had long time chunks in which could read a challenging book in one sitting, without heroic arrangements.↩
One of the most widely known classes of smart drugs on the market, Racetams, have a long history of use and a lot of evidence of their effectiveness. They hasten the chemical exchange between brain cells, directly benefiting our mental clarity and learning process. They are generally not controlled substances and can be purchased without a prescription in a lot of locations globally.
Now, what is the expected value (EV) of simply taking iodine, without the additional work of the experiment? 4 cans of 0.15mg x 200 is $20 for 2.1 years’ worth or ~$10 a year or a NPV cost of $205 (\frac{10}{\ln 1.05}) versus a 20% chance of $2000 or $400. So the expected value is greater than the NPV cost of taking it, so I should start taking iodine.
There is much to be appreciated in a brain supplement like BrainPill (never mind the confusion that may stem from the generic-sounding name) that combines tried-and-tested ingredients in a single one-a-day formulation. The consistency in claims and what users see in real life is an exemplary one, which convinces us to rate this powerhouse as the second on this review list. Feeding one’s brain with nootropics and related supplements entails due diligence in research and seeking the highest quality, and we think BrainPill is up to task. Learn More...
Weyandt et al. (2009) Large public university undergraduates (N = 390) 7.5% (past 30 days) Highest rated reasons were to perform better on schoolwork, perform better on tests, and focus better in class 21.2% had occasionally been offered by other students; 9.8% occasionally or frequently have purchased from other students; 1.4% had sold to other students
Hall, Irwin, Bowman, Frankenberger, & Jewett (2005) Large public university undergraduates (N = 379) 13.7% (lifetime) 27%: use during finals week; 12%: use when party; 15.4%: use before tests; 14%: believe stimulants have a positive effect on academic achievement in the long run M = 2.06 (SD = 1.19) purchased stimulants from other students; M = 2.81 (SD = 1.40) have been given stimulants by other studentsb
An unusual intervention is infrared/near-infrared light of particular wavelengths (LLLT), theorized to assist mitochondrial respiration and yielding a variety of therapeutic benefits. Some have suggested it may have cognitive benefits. LLLT sounds strange but it’s simple, easy, cheap, and just plausible enough it might work. I tried out LLLT treatment on a sporadic basis 2013-2014, and statistically, usage correlated strongly & statistically-significantly with increases in my daily self-ratings, and not with any sleep disturbances. Excited by that result, I did a randomized self-experiment 2014-2015 with the same procedure, only to find that the causal effect was weak or non-existent. I have stopped using LLLT as likely not worth the inconvenience.
These pills don’t work. The reality is that MOST of these products don’t work effectively. Maybe we’re cynical, but if you simply review the published studies on memory pills, you can quickly eliminate many of the products that don’t have “the right stuff.” The active ingredients in brain and memory health pills are expensive and most companies sell a watered down version that is not effective for memory and focus. The more brands we reviewed, the more we realized that many of these marketers are slapping slick labels on low-grade ingredients.
Finally, it’s not clear that caffeine results in performance gains after long-term use; homeostasis/tolerance is a concern for all stimulants, but especially for caffeine. It is plausible that all caffeine consumption does for the long-term chronic user is restore performance to baseline. (Imagine someone waking up and drinking coffee, and their performance improves - well, so would the performance of a non-addict who is also slowly waking up!) See for example, James & Rogers 2005, Sigmon et al 2009, and Rogers et al 2010. A cross-section of thousands of participants in the Cambridge brain-training study found caffeine intake showed negligible effect sizes for mean and component scores (participants were not told to use caffeine, but the training was recreational & difficult, so one expects some difference).
The power calculation indicates a 20% chance of getting useful information. My quasi-experiment has <70% chance of being right, and I preserve a general skepticism about any experiment, even one as well done as the medical student one seems to be, and give that one a <80% chance of being right; so let’s call it 70% the effect exists, or 30% it doesn’t exist (which is the case in which I save money by dropping fish oil for 10 years).

Ashwagandha has been shown to improve cognition and motivation, by means of reducing anxiety [46]. It has been shown to significantly reduce stress and anxiety. As measured by cortisol levels, anxiety symptoms were reduced by around 30% compared to a placebo-controlled (double-blind) group [47]. And it may have neuroprotective effects and improve sleep, but these claims are still being researched.
Looking at the prices, the overwhelming expense is for modafinil. It’s a powerful stimulant - possibly the single most effective ingredient in the list - but dang expensive. Worse, there’s anecdotal evidence that one can develop tolerance to modafinil, so we might be wasting a great deal of money on it. (And for me, modafinil isn’t even very useful in the daytime: I can’t even notice it.) If we drop it, the cost drops by a full $800 from $1761 to $961 (almost halving) and to $0.96 per day. A remarkable difference, and if one were genetically insensitive to modafinil, one would definitely want to remove it.
Omega-3 fatty acids: DHA and EPA – two Cochrane Collaboration reviews on the use of supplemental omega-3 fatty acids for ADHD and learning disorders conclude that there is limited evidence of treatment benefits for either disorder.[42][43] Two other systematic reviews noted no cognition-enhancing effects in the general population or middle-aged and older adults.[44][45]
×